Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 21290
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 106  107  [108]  109  110  111  112  113  114  115  116  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11316정성태9/30/201726734디버깅 기술: 99. (닷넷) 프로세스(EXE)에 디버거가 연결되어 있는지 아는 방법 [4]
11315정성태9/29/201744056기타: 68. "시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지" 구매하신 분들을 위한 C# 7.0/7.1 추가 문법 PDF [8]
11314정성태9/28/201724980디버깅 기술: 98. windbg - 덤프 파일로부터 닷넷 버전 확인하는 방법
11313정성태9/25/201723459디버깅 기술: 97. windbg - 메모리 덤프로부터 DateTime 형식의 값을 알아내는 방법파일 다운로드1
11312정성태9/25/201726926.NET Framework: 685. C# - 구조체(값 형식)의 필드를 리플렉션을 이용해 값을 바꾸는 방법파일 다운로드1
11311정성태9/20/201718960.NET Framework: 684. System.Diagnostics.Process 객체의 명시적인 해제 권장
11310정성태9/19/201724812.NET Framework: 683. WPF의 Window 객체를 생성했는데 GC 수집 대상이 안 되는 이유 [3]
11309정성태9/13/201721427개발 환경 구성: 335. Octave의 명령 창에서 실행한 결과를 복사하는 방법
11308정성태9/13/201723590VS.NET IDE: 121. 비주얼 스튜디오에서 일부 텍스트 파일을 무조건 메모장으로만 여는 문제파일 다운로드1
11307정성태9/13/201726407오류 유형: 421. System.Runtime.InteropServices.SEHException - 0x80004005
11306정성태9/12/201724475.NET Framework: 682. 아웃룩 사용자를 위한 중국어 스팸 필터 Add-in
11305정성태9/12/201725691개발 환경 구성: 334. 기존 프로젝트를 Visual Studio를 이용해 Github의 신규 생성된 repo에 올리는 방법 [1]
11304정성태9/11/201722310개발 환경 구성: 333. 3ds Max를 Hyper-V VM에서 실행하는 방법
11303정성태9/11/201726482개발 환경 구성: 332. Inno Setup 파일의 관리자 권한을 제거하는 방법
11302정성태9/11/201722039개발 환경 구성: 331. SQL Server Express를 위한 방화벽 설정
11301정성태9/11/201720027오류 유형: 420. SQL Server Express 연결 오류 - A network-related or instance-specific error occurred while establishing a connection to SQL Server.
11300정성태9/10/201725701.NET Framework: 681. dotnet.exe - run, exec, build, restore, publish 차이점 [3]
11299정성태9/9/201724120개발 환경 구성: 330. Hyper-V VM의 Internal Network를 Private 유형으로 만드는 방법
11298정성태9/8/201727742VC++: 119. EnumProcesses / EnumProcessModules API 사용 시 주의점 [1]
11297정성태9/8/201724317디버깅 기술: 96. windbg - 풀 덤프에 포함된 모든 닷넷 모듈을 파일로 저장하는 방법
11296정성태9/8/201725877웹: 36. Edge - "이 웹 사이트는 이전 기술에서 실행되며 Internet Explorer에서만 작동합니다." 끄는 방법
11295정성태9/7/201724777디버깅 기술: 95. Windbg - .foreach 사용법
11294정성태9/4/201723896개발 환경 구성: 329. 마이크로소프트의 CoreCLR 프로파일러 예제 빌드 방법 [1]
11293정성태9/4/201725257개발 환경 구성: 328. Visual Studio(devenv.exe)를 배치 파일(.bat)을 통해 실행하는 방법
11292정성태9/4/201723486오류 유형: 419. Cannot connect to WMI provider - Invalid class [0x80041010]
11291정성태9/3/201723607개발 환경 구성: 327. 아파치 서버 2.4를 위한 mod_aspdotnet 마이그레이션
... 106  107  [108]  109  110  111  112  113  114  115  116  117  118  119  120  ...