Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 17829
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 31  32  33  34  [35]  36  37  38  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
13061정성태5/16/202215310.NET Framework: 2013. C# - FILE_FLAG_OVERLAPPED가 적용된 파일의 읽기/쓰기 시 Position 관리파일 다운로드1
13060정성태5/15/202218797.NET Framework: 2012. C# - async/await 그리고 스레드 (3) Task.Delay 재현파일 다운로드1
13059정성태5/14/202216704.NET Framework: 2011. C# - CLR ThreadPool의 I/O 스레드에 작업을 맡기는 방법 [1]파일 다운로드1
13058정성태5/13/202216666.NET Framework: 2010. C# - ThreadPool.SetMaxThreads 사용법 [1]
13057정성태5/12/202218213오류 유형: 812. 파이썬 - ImportError: cannot import name ...
13056정성태5/12/202214319.NET Framework: 2009. C# - async/await 그리고 스레드 (2) MyTask의 호출 흐름 [2]파일 다운로드1
13055정성태5/11/202218712.NET Framework: 2008. C# - async/await 그리고 스레드 (1) MyTask로 재현 [11]파일 다운로드1
13054정성태5/11/202215593.NET Framework: 2007. C# - 10진수 숫자를 담은 문자열을 숫자로 변환하는 방법 [11]파일 다운로드1
13053정성태5/10/202215228.NET Framework: 2006. C# - GC.KeepAlive 메서드의 역할
13052정성태5/9/202215353.NET Framework: 2005. C# - 생성한 참조 개체가 언제 GC의 정리 대상이 될까요?
13051정성태5/8/202214710.NET Framework: 2004. C# XingAPI - ACF 검색 결과로 구한 CSV 파일을 통해 퀀트 종목 찾기파일 다운로드1
13050정성태5/6/202214965.NET Framework: 2003. C# - COM 개체의 이벤트 핸들러에서 발생하는 예외에 대한 CLR의 특별 대우파일 다운로드1
13049정성태5/6/202212813오류 유형: 811. GoLand - Error: Cannot find package
13048정성태5/6/202214995오류 유형: 810. "ASUS TUF GAMING B550M-PLUS (WI-FI)" 모델에서 블루투스 장치가 인식이 안 되는 문제
13047정성태5/6/202214557오류 유형: 809. Speech Recognition could not start
13046정성태5/5/202215088.NET Framework: 2002. C# XingAPI - ACF 파일을 이용한 퀀트 종목 찾기(t1857)
13045정성태5/5/202215390.NET Framework: 2001. C# XingAPI - 주식 종목에 따른 PBR, PER, ROE 구하는 방법(t3341 예제)
13044정성태5/4/202214147오류 유형: 808. error : clang++ exited with code 127
13043정성태5/3/202213281오류 유형: 807. C# - 닷넷 응용 프로그램에서 Informix DB 사용 시 오류 메시지 정리
13042정성태5/3/202214472.NET Framework: 2000. C# - 닷넷 응용 프로그램에서 Informix DB 사용 방법파일 다운로드1
13041정성태4/28/202214560개발 환경 구성: 642. Informix 데이터베이스 docker 환경 구성
13040정성태4/27/202214173VC++: 156. 비주얼 스튜디오 - Linux C/C++ 프로젝트에서 openssl 링크하는 방법
13039정성태4/27/202217274.NET Framework: 1999. C# - Playwright를 이용한 간단한 브라우저 제어 실습
13038정성태4/26/202213455오류 유형: 806. twine 실행 시 ConfigParser.ParsingError: File contains parsing errors: /root/.pypirc
13037정성태4/25/202214225.NET Framework: 1998. Azure Functions를 사용한 간단한 실습
13036정성태4/24/202215190.NET Framework: 1997. C# - nano 시간을 가져오는 방법 [2]
... 31  32  33  34  [35]  36  37  38  39  40  41  42  43  44  45  ...