Microsoft MVP성태의 닷넷 이야기
Math: 5. Euler's totient function - C# [링크 복사], [링크+제목 복사],
조회: 29096
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[Phi.zip]    
(연관된 글이 1개 있습니다.)

Euler's totient function - C#

*** 유의사항: "프로젝트 오일러의 70번 문제"를 풀지 않은 분들의 경우 가능한 문제를 풀고 나서 읽기를 바랍니다.

"프로젝트 오일러" 문제의 69번과 70번 문제는 오일러의 φ(Phi) 함수를 구하는 수학적 지식이 있어야 합니다. 이번 글은 제가 그 문제를 푸는 과정에서 헤맸던 사항을 정리한 것에 불과하고, 제 지식의 한계로 ^^; 그 어떤 증명이나 수학적인 과정들을 포함하고 있지는 않습니다.

일단, 저는 φ(Phi) 함수를 모른 상태에서 10의 7승을 가볍게 생각하고 덤벼들었습니다. 즉, 다음과 같이 각각의 수마다 공약수가 있는지를 기반으로 계산을 시작했더랬습니다.

for (int i = 2; i < 1000000; i ++)
{
    int relativelyPrimeCount = 0;

    for (int j = 1; j < i; j ++)
    {
        if (유클리드호제법(i, j) == true)
        {
            relativelyPrimeCount ++;
        }
    }

    ...[생략]...
}

이 방법이 아닐 거라는 것을 아는 데에는 그리 오래 걸리진 않았습니다. ^^; (원래, "프로젝트 오일러"의 모든 문제는 1분 내에 계산이 나오도록 출제되었다고 합니다.)

따라서, 뭔가 수학적인 계산이 필요함을 알게 되었고 검색을 해서 오일러의 파이 함수를 구하는 공식을 찾아냈습니다.

Euler's totient function
; http://en.wikipedia.org/wiki/Totient#Euler.27s_product_formula

위의 그림에 보면 범용적으로 다음과 같은 계산을 통해서 구할 수 있다고 나옵니다. (역시, 수학자들은 머리가 비상합니다. ^^ 어쩜 저렇게 표기도 멋있게 하는지!)

euler_phi_func_1.png

위와 같이 씌여지면 '비(非) 수학자'들은 당황할 수 있는데 ^^ 그 아래에 있는 예제 식을 보면 금방 이해가 됩니다.

euler_phi_func_2.png

숫자 36은 소인수 분해를 하면 2, 3 값이 나옵니다. 따라서, 파이 함수 값은 36 * (1 - 1/2)(1 - 1/3) = 12라는 계산을 통해서 구할 수 있는 것입니다. 이 때문에 ^^ 지난번에 소인수 분해를 하는 함수를 다룬 이야기를 쓴 것입니다.

소수 판정 및 소인수 분해 소스 코드 - C#
; https://www.sysnet.pe.kr/2/0/1255

이렇게 해서 파이 함수를 C#으로 작성하면 대강 다음과 같이 나옵니다.

static int GetPhiCount(int targetNumber)
{
    // 소인수를 모두 구하고,
    List<int> primes = new List<int>();

    int tempNumber = targetNumber;

    for (int i = 2; i * i <= tempNumber;)
    {
        if (tempNumber % i == 0)
        {
            primes.Add(i);
            tempNumber = tempNumber / i;
        }
        else
        {
            i++;
        }
    }

    primes.Add(tempNumber);

    double product = 1;

    // Euler's totient function 계산을 합니다.
    for (int i = 0; i < primes.Count; i++)
    { 
        product = product * (1 - (double)1 / primes[i]);
    }

    return (int)(product * targetNumber);
}

위와 같이 계산하고 실행하면, 다음과 같이 계산이 되어 답이 9708131로 나옵니다.

[0]21 ==> 1.75 (21, 12)
[1]291 ==> 1.515625 (291, 192)
[2]2817 ==> 1.50480769230769 (2817, 1872)
[3]2991 ==> 1.50150602409639 (2991, 1992)
[4]4435 ==> 1.25141083521445 (4435, 3544)
[5]20617 ==> 1.02185765265662 (20617, 20176)
[6]23729 ==> 1.01933072726492 (23729, 23279)
[7]49781 ==> 1.01654040146209 (49781, 48971)
[8]75841 ==> 1.00873856139604 (75841, 75184)
[9]118577 ==> 1.00595546129374 (118577, 117875)
[10]176569 ==> 1.00496880976232 (176569, 175696)
[11]209681 ==> 1.00474385574845 (209681, 208691)
[12]223121 ==> 1.00445682952852 (223121, 222131)
[13]284029 ==> 1.00384887255248 (284029, 282940)
[14]400399 ==> 1.00340567361668 (400399, 399040)
[15]474883 ==> 1.00294622038996 (474883, 473488)
[16]704129 ==> 1.00243444439857 (704129, 702419)
[17]732031 ==> 1.00235378851778 (732031, 730312)
[18]778669 ==> 1.00228215874454 (778669, 776896)
[19]783169 ==> 1.0022690159663 (783169, 781396)
[20]979571 ==> 1.00202538689493 (979571, 977591)
[21]989537 ==> 1.0020232112352 (989537, 987539)
[22]1288663 ==> 1.00178409288788 (1288663, 1286368)
[23]1405913 ==> 1.00170571256962 (1405913, 1403519)
[24]1504051 ==> 1.00169629917736 (1504051, 1501504)
[25]1514419 ==> 1.00163696539025 (1514419, 1511944)
[26]1617953 ==> 1.00159343411051 (1617953, 1615379)
[27]1679567 ==> 1.00154564021527 (1679567, 1676975)
[28]1945241 ==> 1.00143632966803 (1945241, 1942451)
[29]2094901 ==> 1.00143266612617 (2094901, 2091904)
[30]2239261 ==> 1.0013724224038 (2239261, 2236192)
[31]2710627 ==> 1.00125996595765 (2710627, 2707216)
[32]2868469 ==> 1.00124716569118 (2868469, 2864896)
[33]3159587 ==> 1.00117494999016 (3159587, 3155879)
[34]3582907 ==> 1.00111402322488 (3582907, 3578920)
[35]3689251 ==> 1.0011014351491 (3689251, 3685192)
[36]4079147 ==> 1.00108670070255 (4079147, 4074719)
[37]4696009 ==> 1.00107632552825 (4696009, 4690960)
[38]5050429 ==> 1.00089359323969 (5050429, 5045920)
[39]5380657 ==> 1.0008923223447 (5380657, 5375860)
[40]5459471 ==> 1.00085796137744 (5459471, 5454791)
[41]5886817 ==> 1.00084003811029 (5886817, 5881876)
[42]6018163 ==> 1.00083067694101 (6018163, 6013168)
[43]6159431 ==> 1.00081892749421 (6159431, 6154391)
[44]6606071 ==> 1.00081809864482 (6606071, 6600671)
[45]6636841 ==> 1.00077763053849 (6636841, 6631684)
[46]7188239 ==> 1.00075179187505 (7188239, 7182839)
[47]7357291 ==> 1.00074798090044 (7357291, 7351792)
[48]7507321 ==> 1.00074502794821 (7507321, 7501732)
[49]7983917 ==> 1.0007242290464 (7983917, 7978139)
[50]8219537 ==> 1.00069906784866 (8219537, 8213795)
[51]8849513 ==> 1.00067778448828 (8849513, 8843519)
[52]9708131 ==> 1.00064936196064 (9708131, 9701831)

그런데, 이 답은 옳지 않다고 판정되었습니다. 제가 이 단계에서 ^^; 거의 이틀을 고민했습니다. 혹시 파이 함수를 구하는 내부 코드에 문제가 있는 것은 아닌지...? 내가 모르는 뭔가 특별한 수학적 지식이 포함되어야 하는 것은 아닌지...? 와 같은 별의별 가정을 다 해보았는데, 결국 문제를 쉽게 식별하지 못했던 가장 큰 이유는,,, 코드를 쳐다보는 눈이 '리턴값'을 주목하는 데 오래 걸렸기 때문이었습니다.

설마... 리턴값이 잘못 되었으리라고는 상상도 못했는데요.

다시 "Euler's totient function" 공식을 보시면, 분수를 포함하므로 결국 값들이 double 형으로 계산이 되는 것을 알 수 있습니다. 따라서 단순히 (int) 값으로 형변환하면 값이 절삭이 되어 결과가 틀어져 버리는 것입니다. 위의 계산값들을 보면 미세한 n / φ(n) 결과값이 0.0001로 순위가 차이가 나기 때문에 (int) 형변환으로 인한 오차는 클 수밖에 없었던 것이지요.

(int) 절삭의 효과는 테스트 해보면 다음과 같습니다.

Console.WriteLine(((int)1.3));
Console.WriteLine(((int)1.6));

1
1

Console.WriteLine(((int)Math.Round(1.3)));
Console.WriteLine(((int)Math.Round(1.6)));

1
2

따라서, 반환값을 (int) 형변환하기 전에, Math.Round로 보정을 해주면 "프로젝트 오일러" 측에서 원하는 답이 나옵니다. ^^; 일단 그걸로 답을 내었으니 급한 불은 껐고. 이제 성능 개선을 해볼 차례입니다.

그래서, 조금 더 들여다 보면 파이 함수의 재미있는 성질을 발견하게 됩니다.

오일러 피 함수
; http://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%ED%94%BC_%ED%95%A8%EC%88%98

위의 글에 보면 다음과 같은 공식이 나옵니다.

p가 소수일 때, φ(p) = p - 1

예를 들어, p == 13이면, (소수의 성질이라 당연하겠지만) 12를 반환하면 되는 것입니다. 만약 이 값을 기존 "Euler's totient function"에 대입하면 다음과 같이 소수점이 포함된 값이 나옵니다.

φ(13) = 13 * (1 - 1/13)
      = 13 * 0.92307692307692313 (923076이 반복되는 무한 소수)

물론, 거의 12가 나오긴 하지만 엄밀히 (13 - 1) != 13 * 0.92307692307692313이므로 정확하게 반환해주는 공식을 추가하는 것이 좋겠습니다.

이렇게 소수들에 대한 파이 함수 값을 구하고 나면 다시 한번 재미있는 성질을 찾을 수 있는데요.

m, n이 서로소인 정수일 때, φ(mn) = φ(m)φ(n)

위의 2가지 성질로 인해서 정수값으로 반환할 수 있는 좀 더 많은 기회가 생깁니다. 왜냐하면, 모든 수는 소수 아니면, 소인수 분해되어 결국 소수의 곱으로 바뀌기 때문에 중간에 나오는 소수의 정수값을 보관해 두었다가 다른 수의 소인수 분해에 그 값의 곱을 이용하면 되기 때문입니다.

그런데, 위의 경우로 걸러지지 않는 수들이 있습니다. 바로 4와 같은 수인데, 이런 경우 φ(2 * 2) != φ(2)φ(2)입니다. 즉, m과 n이 서로소라는 조건에 맞지 않으므로 계산이 틀려지는데요. 그런데, 다음과 같은 성질도 있어서 4는 여기에 대입해 줄 수 있습니다.

φ(pk) =  pk - p(k - 1) = pk - 1 * (p - 1)

그래서, 함수는 최종적으로 다음과 같이 바뀔 수 있습니다.

static List<int> _primes = new List<int>();
static int GetPhiCount2(Dictionary<int, int> primePhi, int targetNumber)
{
    // 소인수를 모두 구하고
    Dictionary<int, int> primes = new Dictionary<int, int>();

    int tempNumber = targetNumber;
    int primeCount = 0;
    int firstPrimeNumber = 0;
    int secondPrimeNumber = 0;

    for (int n = 0; n < _primes.Count; )
    {
        int prime = _primes[n];

        if (prime * prime > targetNumber)
        {
            break;
        }

        if (tempNumber % prime == 0)
        {
            if (primes.ContainsKey(prime) == true)
            {
                primes[prime]++;
            }
            else
            {
                primes.Add(prime, 1);
            }

            primeCount++;
            firstPrimeNumber = prime;

            tempNumber = tempNumber / prime;
        }
        else
        {
            n++;
        }
    }

    if (primes.Count == 0)
    {
        // 적용 1: p가 소수일 때, φ(p) = p - 1 
        _primes.Add(targetNumber);
        primePhi.Add(targetNumber, targetNumber - 1);
        return targetNumber - 1;
    }

    if (tempNumber != 1)
    {
        primes.Add(tempNumber, 1);
        secondPrimeNumber = tempNumber;
        primeCount++;
    }

    if (primes.Count == 2 && primeCount == 2)
    {
        // 적용 2: m,n이 서로소인 정수일 때, φ(mn) = φ(m)φ(n)
        return primePhi[firstPrimeNumber] * primePhi[secondPrimeNumber];
    }
    else if (primes.Count == 1)
    {
        // 적용 3: φ(pk) =  pk - p(k - 1) = pk - 1 * (p - 1)
        int k = primes[firstPrimeNumber];
        return PowOf(firstPrimeNumber, k - 1) * (firstPrimeNumber - 1);
    }

    double product = 1;

    foreach (var aPrimeKey in primes.Keys)
    {
        product = product * (1 - (double)1 / aPrimeKey);
    }

    return (int)Math.Round(product * targetNumber);
}

static int PowOf(int p, int k)
{
    int result = 1;

    while (k-- > 0)
    {
        result = result * p;
    }

    return result;
}

함수는 길어졌지만, 탈출구가 많아졌기 때문에 이렇게 계산하면 결과를 20초 안에 끊을 수 있습니다. 위의 방법은 지난번 "소인수 분해"의 마지막 부분에서 소수를 재활용하는 방법까지 사용된 것입니다.

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/10/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1096정성태8/15/201125657디버깅 기술: 42. Watson Bucket 정보를 이용한 CLR 응용 프로그램 예외 분석 - (2)
1095정성태8/14/201126102디버깅 기술: 41. Windbg - 비정상 종료된 닷넷 프로그램의 StackTrace에서 보이는 offset 값 의미
1094정성태8/14/201130461오류 유형: 131. Fiddler가 강제 종료된 경우, 웹 사이트 방문이 안되는 현상
1093정성태7/27/201124092오류 유형: 130. Unable to connect to the Microsoft Visual Studio Remote Debugging Monitor ... Access is denied.
1092정성태7/22/201126471Team Foundation Server: 46. 코드 이외의 파일에 대해 소스 제어에서 제외시키는 방법
1091정성태7/21/201125473개발 환경 구성: 128. WP7 Emulator 실행 시 audiodg.exe의 CPU 소모율 증가 [2]
1089정성태7/18/201131051.NET Framework: 234. 왜? Button 컨트롤에는 MouseDown/MouseUp 이벤트가 발생하지 않을까요?파일 다운로드1
1088정성태7/16/201124197.NET Framework: 233. Entity Framework 4.1 - 윈도우 폰 7에서의 CodeFirst 순환 참조 문제파일 다운로드1
1087정성태7/15/201126818.NET Framework: 232. Entity Framework 4.1 - CodeFirst 개체의 직렬화 시 순환 참조 해결하는 방법 - 두 번째 이야기파일 다운로드1
1086정성태7/14/201128281.NET Framework: 231. Entity Framework 4.1 - CodeFirst 개체의 직렬화 시 순환 참조 해결하는 방법 [1]파일 다운로드1
1085정성태7/14/201128695.NET Framework: 230. Entity Framework 4.1 - Code First + WCF 서비스 시 EndpointNotFoundException 오류 - 두 번째 이야기파일 다운로드1
1084정성태7/11/201134005.NET Framework: 229. SQL 서버 - DB 테이블의 데이터 변경에 대한 알림 처리 [4]파일 다운로드1
1083정성태7/11/201128060.NET Framework: 228. Entity Framework 4.1 - Code First + WCF 서비스 시 EndpointNotFoundException 오류
1082정성태7/10/201127623.NET Framework: 227. basicHttpBinding + 사용자 정의 인증 구현 [2]파일 다운로드1
1081정성태7/9/201126940VC++: 53. Windows 7에서 gcc.exe 실행 시 Access denied 오류 [2]
1080정성태7/8/201125423웹: 23. Sysnet 웹 사이트의 HTML5 변환 기록 - 두 번째 이야기파일 다운로드1
1079정성태7/6/201129875오류 유형: 129. Hyper-V + Realtek 랜카드가 설치된 시스템의 BSOD 현상 [2]
1078정성태7/5/201137429VC++: 52. Chromium 컴파일하는 방법 [2]
1077정성태6/24/201135047.NET Framework: 226. HttpWebRequest 타입의 HaveResponse 속성 이야기파일 다운로드1
1076정성태6/23/201129180오류 유형: 128. SQL Express - User Instance 옵션을 사용한 경우 발생하는 오류 메시지 유형 2가지
1075정성태6/21/201124798VS.NET IDE: 69. 윈폰 프로젝트에서 WCF 서비스 참조할 때 Reference.cs 파일이 비어있는 경우
1074정성태6/20/201124874.NET Framework: 225. 닷넷 네트워크 라이브러리의 트레이스 기능파일 다운로드1
1073정성태6/20/201127103오류 유형: 127. Visual Studio에서 WCF 서비스의 이름 변경 시 발생할 수 있는 오류
1072정성태6/19/201126568.NET Framework: 224. EF 4.1 Code First에서 Identity 칼럼 생성하는 방법파일 다운로드1
1071정성태6/19/201130088.NET Framework: 223. Entity Framework 4.1의 Code First를 이용한 SQL Azure 데이터베이스 생성 [3]파일 다운로드1
1070정성태6/19/201127607.NET Framework: 222. Windows Azure - VM Role 베타 프로그램 참여 [2]
... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...