Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

파이썬 tensorflow - ValueError: Shapes (...) and (...) are incompatible

모델 학습을 실행했는데,

...[생략]...
model.add(Dense(units=256, input_dim=784, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

ValueError가 발생한다면?

raise ValueError("Shapes %s and %s are incompatible" % (self, other))

상황에 따라 다를 수 있지만, 제가 겪은 상황에서의 self와 other의 의미는 각각 다음과 같습니다.

self == (batch_size, 요소의 dim)
other == (batch_size, 출력 층의 units)

사실 대개의 경우 이 오류는 model.fit에 전달한 X_train, Y_train과 validation_data에 전달한 값들의 차원이 신경망의 units와 맞지 않기 때문에 발생합니다.

예를 들어, validation_data에 전달할 Y_val에 대해 요구되는 차원이 "Y_val: (데이터 수, 10)"인데, 실수로 Y_val: "(데이터 수, 28, 28, 10)"라는 식의 값을 전달하게 되면, model.fit에서 X_train, Y_train에 대한 1차 학습은 끝났다는 식의 메시지와 함께,

 993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186

이어서 validation_data를 검증하려고 수행되는 시점에 다음과 같은 식의 Traceback 오류가 발생합니다.

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 28, 28, 10) and (50, 10) are incompatible

언급했듯이, 이것은 다음과 같이 해석될 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 정황으로 보아 model.fit의 validation_data에 전달한 데이터 중에 (데이터 수, 28, 28, 10)에 해당하는 값이 있으며 이것은 출력 Dense(batch_size, 10개의 출력)에 맞지 않으므로 오류가 발생했음을 짐작게 합니다. 실제로 validate_data에 전달한 값의 차원을 살펴보면,

print("X_val:", X_val.shape)  # X_val: (10000, 784)
print("Y_val:", Y_val.shape)  # Y_val: (10000, 28, 28, 10)

오류 메시지에서 나왔던 "(크기, 28, 28, 10)"과 동일하게 겹쳐 있는 Y_val의 데이터가 정확하지 않음을 알 수 있습니다. 사실, "(50, 10)"이라는 출력에서 "10"이 마지막 Dense(출력 층)의 units에 해당하기 때문에 이런 경우 X_val을 살펴볼 필요 없이 Y_val 값만 조사하면 됩니다.




한 가지 더 볼까요? ^^

model.add(Dense(units=5, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

위와 같이 실행했는데 다음과 같은 오류가 발생한다면?

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 10) and (50, 5) are incompatible

게다가 이번엔 "993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186"라는 식의 메시지도 전혀 없었습니다. 그렇다면, 이번엔 model.fit에 전달된 데이터 중 아직 validation_data를 검증하는 단계까지 가기도 전에 X_train, Y_train부터 맞지 않은 데이터가 전달된 것입니다.

따라서, 이렇게 해석해 볼 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 위의 예제에서는 마지막 Dense의 units가 5인데, 입력으로 전달된 데이터의 차원이 출력과 맞지 않은 것이므로 X_train이 아닌 Y_train의 데이터가 잘못된 경우라고 판정할 수 있습니다. 실제로 이에 대해 shape을 검사해 보면,

print("Y_train:", Y_train.shape)  # (데이터 크기, 10)

전달된 Y_train의 차원이 10으로 나오는데 Dense에는 5라고 지정했기 때문에 불일치가 발생한 것입니다. 만약 Dense에 지정한 units가 맞는 값이라면, 저 코드의 출력값(Y_train.shape)은 5가 나와야 했습니다. 혹은 반대로 데이터가 맞는 경우라면, 마지막 Dense의 출력을 잘못 지정한 것이므로 Dense의 units 값을 "model.add(Dense(units=10, activation='softmax'))"로 바꿔야 합니다.

이 정도면, 향후 ValueError가 발생했을 때 어떤 데이터가 잘못된 것인지 판단할 수 있을 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/30/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-11-30 04시33분
[1234] 안녕하세용
"마지막 요소가 (10이 아닌) 5가 나와야 했던 것입니다."
해당 경우에 해결 방법이 궁금합니다!
[guest]
2021-11-30 04시41분
글에 답이 있습니다. 해당 연산을 수행하는 X_train, Y_train, validation_data의 차원 수가 Dense에 지정한 units와 맞지 않기 때문입니다. 만약, 전달한 데이터가 올바른 값이라면 Dense의 units를 그에 맞게 변경해야 하고, 그 반대라면 Dense의 units에 맞는 데이터를 전달해야 합니다.

본문에서 언급한 것처럼, 각 데이터의 shape 값을 조사해보고 그것이 Dense의 units와 일치하는지 살펴보세요. (다르기 때문에 오류가 발생하는 것입니다. 좀 더 이해가 쉽도록 본문의 문장을 수정했습니다.)
정성태

... 76  77  [78]  79  80  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11986정성태7/17/201916932오류 유형: 557. 드라이브 문자를 할당하지 않은 파티션을 탐색기에서 드라이브 문자와 함께 보여주는 문제
11985정성태7/17/201917079개발 환경 구성: 452. msbuild - csproj에 환경 변수 조건 사용 [1]
11984정성태7/9/201925609개발 환경 구성: 451. Microsoft Edge (Chromium)을 대상으로 한 Selenium WebDriver 사용법 [1]
11983정성태7/8/201914944오류 유형: 556. nodemon - 'mocha' is not recognized as an internal or external command, operable program or batch file.
11982정성태7/8/201915016오류 유형: 555. Visual Studio 빌드 오류 - result: unexpected exception occured (-1002 - 0xfffffc16)
11981정성태7/7/201918088Math: 64. C# - 3층 구조의 신경망(분류)파일 다운로드1
11980정성태7/7/201928232개발 환경 구성: 450. Visual Studio Code의 Java 확장을 이용한 간단한 프로젝트 구축파일 다운로드1
11979정성태7/7/201918506개발 환경 구성: 449. TFS에서 gitlab/github등의 git 서버로 마이그레이션하는 방법
11978정성태7/6/201917725Windows: 161. 계정 정보가 동일하지 않은 PC 간의 인증을 수행하는 방법 [1]
11977정성태7/6/201922320오류 유형: 554. git push - error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large
11976정성태7/4/201916707오류 유형: 553. (잘못 인증 한 후) 원격 git repo 재인증 시 "remote: HTTP Basic: Access denied" 오류 발생
11975정성태7/4/201925488개발 환경 구성: 448. Visual Studio Code에서 콘솔 응용 프로그램 개발 시 "입력"받는 방법
11974정성태7/4/201921218Linux: 22. "Visual Studio Code + Remote Development"로 윈도우 환경에서 리눅스(CentOS 7) C/C++ 개발
11973정성태7/4/201919949Linux: 21. 리눅스에서 공유 라이브러리가 로드되지 않는다면?
11972정성태7/3/201923769.NET Framework: 847. JAVA와 .NET 간의 AES 암호화 연동 [1]파일 다운로드1
11971정성태7/3/201920014개발 환경 구성: 447. Visual Studio Code에서 OpenCvSharp 개발 환경 구성
11970정성태7/2/201918609오류 유형: 552. 웹 브라우저에서 파일 다운로드 후 "Running security scan"이 끝나지 않는 문제
11969정성태7/2/201919094Math: 63. C# - 3층 구조의 신경망파일 다운로드1
11968정성태7/1/201925790오류 유형: 551. Visual Studio Code에서 Remote-SSH 연결 시 "Opening Remote..." 단계에서 진행되지 않는 문제 [1]
11967정성태7/1/201919833개발 환경 구성: 446. Synology NAS를 Windows 10에서 iSCSI로 연결하는 방법
11966정성태6/30/201918807Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화파일 다운로드1
11965정성태6/30/201919375.NET Framework: 846. C# - 2차원 배열을 1차원 배열로 나열하는 확장 메서드파일 다운로드1
11964정성태6/30/201920940Linux: 20. C# - Linux에서의 Named Pipe를 이용한 통신
11963정성태6/29/201920656Linux: 19. C# - .NET Core Unix Domain Socket 사용 예제
11962정성태6/27/201918321Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류파일 다운로드1
11961정성태6/27/201917848Graphics: 37. C# - PLplot - 출력 모음(Family File Output)
... 76  77  [78]  79  80  81  82  83  84  85  86  87  88  89  90  ...