Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

파이썬 tensorflow - ValueError: Shapes (...) and (...) are incompatible

모델 학습을 실행했는데,

...[생략]...
model.add(Dense(units=256, input_dim=784, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

ValueError가 발생한다면?

raise ValueError("Shapes %s and %s are incompatible" % (self, other))

상황에 따라 다를 수 있지만, 제가 겪은 상황에서의 self와 other의 의미는 각각 다음과 같습니다.

self == (batch_size, 요소의 dim)
other == (batch_size, 출력 층의 units)

사실 대개의 경우 이 오류는 model.fit에 전달한 X_train, Y_train과 validation_data에 전달한 값들의 차원이 신경망의 units와 맞지 않기 때문에 발생합니다.

예를 들어, validation_data에 전달할 Y_val에 대해 요구되는 차원이 "Y_val: (데이터 수, 10)"인데, 실수로 Y_val: "(데이터 수, 28, 28, 10)"라는 식의 값을 전달하게 되면, model.fit에서 X_train, Y_train에 대한 1차 학습은 끝났다는 식의 메시지와 함께,

 993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186

이어서 validation_data를 검증하려고 수행되는 시점에 다음과 같은 식의 Traceback 오류가 발생합니다.

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 28, 28, 10) and (50, 10) are incompatible

언급했듯이, 이것은 다음과 같이 해석될 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 정황으로 보아 model.fit의 validation_data에 전달한 데이터 중에 (데이터 수, 28, 28, 10)에 해당하는 값이 있으며 이것은 출력 Dense(batch_size, 10개의 출력)에 맞지 않으므로 오류가 발생했음을 짐작게 합니다. 실제로 validate_data에 전달한 값의 차원을 살펴보면,

print("X_val:", X_val.shape)  # X_val: (10000, 784)
print("Y_val:", Y_val.shape)  # Y_val: (10000, 28, 28, 10)

오류 메시지에서 나왔던 "(크기, 28, 28, 10)"과 동일하게 겹쳐 있는 Y_val의 데이터가 정확하지 않음을 알 수 있습니다. 사실, "(50, 10)"이라는 출력에서 "10"이 마지막 Dense(출력 층)의 units에 해당하기 때문에 이런 경우 X_val을 살펴볼 필요 없이 Y_val 값만 조사하면 됩니다.




한 가지 더 볼까요? ^^

model.add(Dense(units=5, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

위와 같이 실행했는데 다음과 같은 오류가 발생한다면?

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 10) and (50, 5) are incompatible

게다가 이번엔 "993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186"라는 식의 메시지도 전혀 없었습니다. 그렇다면, 이번엔 model.fit에 전달된 데이터 중 아직 validation_data를 검증하는 단계까지 가기도 전에 X_train, Y_train부터 맞지 않은 데이터가 전달된 것입니다.

따라서, 이렇게 해석해 볼 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 위의 예제에서는 마지막 Dense의 units가 5인데, 입력으로 전달된 데이터의 차원이 출력과 맞지 않은 것이므로 X_train이 아닌 Y_train의 데이터가 잘못된 경우라고 판정할 수 있습니다. 실제로 이에 대해 shape을 검사해 보면,

print("Y_train:", Y_train.shape)  # (데이터 크기, 10)

전달된 Y_train의 차원이 10으로 나오는데 Dense에는 5라고 지정했기 때문에 불일치가 발생한 것입니다. 만약 Dense에 지정한 units가 맞는 값이라면, 저 코드의 출력값(Y_train.shape)은 5가 나와야 했습니다. 혹은 반대로 데이터가 맞는 경우라면, 마지막 Dense의 출력을 잘못 지정한 것이므로 Dense의 units 값을 "model.add(Dense(units=10, activation='softmax'))"로 바꿔야 합니다.

이 정도면, 향후 ValueError가 발생했을 때 어떤 데이터가 잘못된 것인지 판단할 수 있을 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/30/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-11-30 04시33분
[1234] 안녕하세용
"마지막 요소가 (10이 아닌) 5가 나와야 했던 것입니다."
해당 경우에 해결 방법이 궁금합니다!
[guest]
2021-11-30 04시41분
글에 답이 있습니다. 해당 연산을 수행하는 X_train, Y_train, validation_data의 차원 수가 Dense에 지정한 units와 맞지 않기 때문입니다. 만약, 전달한 데이터가 올바른 값이라면 Dense의 units를 그에 맞게 변경해야 하고, 그 반대라면 Dense의 units에 맞는 데이터를 전달해야 합니다.

본문에서 언급한 것처럼, 각 데이터의 shape 값을 조사해보고 그것이 Dense의 units와 일치하는지 살펴보세요. (다르기 때문에 오류가 발생하는 것입니다. 좀 더 이해가 쉽도록 본문의 문장을 수정했습니다.)
정성태

... 76  77  78  79  [80]  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11936정성태6/10/201918407Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인 [2]파일 다운로드1
11935정성태6/9/201919986.NET Framework: 843. C# - PLplot 출력을 파일이 아닌 Window 화면으로 변경
11934정성태6/7/201921322VC++: 133. typedef struct와 타입 전방 선언으로 인한 C2371 오류파일 다운로드1
11933정성태6/7/201919636VC++: 132. enum 정의를 C++11의 enum class로 바꿀 때 유의할 사항파일 다운로드1
11932정성태6/7/201918824오류 유형: 544. C++ - fatal error C1017: invalid integer constant expression파일 다운로드1
11931정성태6/6/201919337개발 환경 구성: 441. C# - CairoSharp/GtkSharp 사용을 위한 프로젝트 구성 방법
11930정성태6/5/201919874.NET Framework: 842. .NET Reflection을 대체할 System.Reflection.Metadata 소개 [1]
11929정성태6/5/201919444.NET Framework: 841. Windows Forms/C# - 클립보드에 RTF 텍스트를 복사 및 확인하는 방법 [1]
11928정성태6/5/201918214오류 유형: 543. PowerShell 확장 설치 시 "Catalog file '[...].cat' is not found in the contents of the module" 오류 발생
11927정성태6/5/201919443스크립트: 15. PowerShell ISE의 스크립트를 복사 후 PPT/Word에 붙여 넣으면 한글이 깨지는 문제 [1]
11926정성태6/4/201919945오류 유형: 542. Visual Studio - pointer to incomplete class type is not allowed
11925정성태6/4/201919824VC++: 131. Visual C++ - uuid 확장 속성과 __uuidof 확장 연산자파일 다운로드1
11924정성태5/30/201921490Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [1]파일 다운로드1
11923정성태5/30/201921083Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기파일 다운로드1
11922정성태5/29/201918558.NET Framework: 840. ML.NET 데이터 정규화파일 다운로드1
11921정성태5/28/201924414Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)파일 다운로드1
11920정성태5/28/201916071.NET Framework: 839. C# - PLplot 색상 제어
11919정성태5/27/201920328Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법 [1]파일 다운로드1
11918정성태5/25/201921165Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)파일 다운로드1
11917정성태5/24/201922162Math: 52. MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차파일 다운로드1
11916정성태5/24/201919973Math: 51. MathNET + OxyPlot을 이용한 간단한 통계 정보 처리 - Histogram파일 다운로드1
11915정성태5/24/201923096Linux: 11. 리눅스의 환경 변수 관련 함수 정리 - putenv, setenv, unsetenv
11914정성태5/24/201922143Linux: 10. 윈도우의 GetTickCount와 리눅스의 clock_gettime파일 다운로드1
11913정성태5/23/201918782.NET Framework: 838. C# - 숫자형 타입의 bit(2진) 문자열, 16진수 문자열 구하는 방법파일 다운로드1
11912정성태5/23/201918732VS.NET IDE: 137. Visual Studio 2019 버전 16.1부터 리눅스 C/C++ 프로젝트에 추가된 WSL 지원
11911정성태5/23/201917504VS.NET IDE: 136. Visual Studio 2019 - 리눅스 C/C++ 프로젝트에 인텔리센스가 동작하지 않는 경우
... 76  77  78  79  [80]  81  82  83  84  85  86  87  88  89  90  ...