Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 3개 있습니다.)
.NET Framework: 830. C# - 비동기 호출을 취소하는 CancellationToken의 간단한 예제 코드
; https://www.sysnet.pe.kr/2/0/11888

닷넷: 2218. C# - (예를 들어, Socket) 비동기 I/O에 대한 await 호출 시 CancellationToken을 이용한 취소
; https://www.sysnet.pe.kr/2/0/13561

닷넷: 2231. C# - ReceiveTimeout, SendTimeout이 적용되지 않는 Socket await 비동기 호출
; https://www.sysnet.pe.kr/2/0/13580




C# - (예를 들어, Socket) 비동기 I/O에 대한 await 호출 시 CancellationToken을 이용한 취소

예전에,

C# - 비동기 호출을 취소하는 CancellationToken의 간단한 예제 코드
; https://www.sysnet.pe.kr/2/0/11888

CancellationToken을 설명하면서, 사용자가 직접 구현하는 취소 동작을 설명했습니다. 그러니까, 그 코드가 시사하는 바는, "마법은 없다"입니다. ^^ 모든 건, 개발자가 지정해 준 대로 동작하는 것이므로 CancellationToken을 이용한 취소도 결국 개발자가 어떻게 그것을 처리하느냐에 따라 달라집니다.

이번 글에서는 그에 대한 사례를 들어봅니다.




그나저나, 혹시 커널 레벨에 전달된 비동기 I/O를 어떻게 취소할 수 있는지 생각해 보셨나요? 닷넷 개발만 했다면 짐작할 수 없을 텐데요, Win32 시절의 개발자라면 비동기 I/O 원칙에 따라 CancelIo, CancelIoEx 함수 호출로 이어졌을 거라는 짐작을 할 수 있을 것입니다.

달리 말하면, CancellationToken을 이용한 비동기 I/O 메서드에 대한 취소를 원한다면 CancelIo/CancelIoEx API를 호출해야 하지만, 이것 역시 개발자가 그렇게 구현했어야만 하는 것입니다. 제가 이렇게 말했으니, 아마도 닷넷 코드의 비동기 I/O 코드가 언제나 그런 식으로 동작하는 것은 아니라는 것을 눈치채셨을 것입니다. ^^

여기서는 그에 대한 사례로 TcpClient의 NetworkStream.WriteAsync 사용 예를 보겠습니다. 우선, Write 동작에 대한 테스트를 받아주는 서버를 다음과 같이 구현해 주고,

internal class Program
{
    static void Main(string[] args)
    {
        Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
        IPEndPoint ep = new IPEndPoint(IPAddress.Any, 15000);
        socket.Bind(ep);
        socket.Listen(5);

        while (true)
        {
            Socket clntSocket = socket.Accept();
            Console.WriteLine($"Connected: {clntSocket.RemoteEndPoint}");
            ThreadPool.QueueUserWorkItem((arg) =>
            {
                while (true)
                {  
                    // 끊김만 감지
                    try
                    {
                        if (clntSocket.Poll(0, SelectMode.SelectRead))
                        {
                            byte[] buff = new byte[1];
                            if (clntSocket.Receive(buff, SocketFlags.Peek) == 0)
                            {
                                break;
                            }
                        }
                    }
                    catch 
                    {
                        break;
                    }

                    Thread.Sleep(1000);
                }
                Console.WriteLine($"Client disconnected: {clntSocket.RemoteEndPoint}");
                clntSocket.Close();
            });
        }
    }
}

클라이언트는, Send에서의 (일단은) blocking 테스트 여부를 위해 다음과 같이 만들어 보겠습니다.

internal class Program
{
    static void Main(string[] args)
    {
        Socket client = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

        client.Connect("192.168.100.20", 15000);
        int length = client.SendBufferSize; // Windows 11의 경우 보통 65536

        long totalSent = 0;
        int count = 0;
        while (true)
        {
            byte[] buf = new byte[length];
            Console.WriteLine($"Sending: {buf.Length}");
            int sendLen = client.Send(buf, 0, buf.Length, SocketFlags.None); // 메서드 호출 후 곧바로 반환
            totalSent += sendLen;
            count++;
            Console.WriteLine($"[{count}] Sent: {buf.Length}, Total: {totalSent}");
        }

        // client.Close();
    }
}

/* 출력 결과:
Sending: 65536
[1] Sent: 65536, Total: 65536
Sending: 65536
...[생략]...
Sending: 65536
[49] Sent: 65536, Total: 3211264
Sending: 65536
[50] Sent: 65536, Total: 3276800
Sending: 65536
*/

테스트를 해보면, 3MB 정도에서 (대상 소켓에서 Receive를 하지 않으므로) 버퍼가 모두 차는 바람에 더 이상 Send를 하지 못하고 Send 호출에 blocking이 걸리는 것을 확인할 수 있습니다.

그럼, 이제 위의 예제를 비동기로 만들어 보면,

static async Task Main(string[] args)
{
    TcpClient client = new TcpClient();

    client.Connect("192.168.100.20", 15000);
    NetworkStream ns = client.GetStream();

    int length = client.SendBufferSize;

    long totalSent = 0;
    int count = 0;

    while (true)
    {
        byte[] buf = new byte[length];
        Console.WriteLine($"Sending: {buf.Length}");
        Task task = ns.WriteAsync(buf, 0, buf.Length);

        await task;

        totalSent += length;
        count++;
        Console.WriteLine($"[{count}] Sent: {buf.Length}, Total: {totalSent}");
    }

    // client.Close();
}

/* 출력 결과:
Sending: 65536
[1] Sent: 65536, Total: 65536
Sending: 65536
...[생략]...
Sending: 65536
[49] Sent: 65536, Total: 3211264
Sending: 65536
[50] Sent: 65536, Total: 3276800
Sending: 65536
*/

역시나 동일하게 3MB 송신 후 await에서 걸리는 것을 확인할 수 있습니다. 단지, 동기 버전과 다른 점이 있다면 위의 비동기 버전에서는 스레드의 blocking이 아닌, TCP Send가 완료되지 않아 await 이후의 분리된 코드 영역이 콜백에서 실행되지 않는 것입니다.




자, 이제 위의 비동기 호출에 대한 취소를 해볼 텐데요, 차이점을 알기 위해 .NET Framework과 .NET Core 환경으로 나눠서 실행할 것입니다. 우선, .NET Framework 프로젝트로 위의 코드에서 비동기 호출을 취소하기 위한 코드만 다음과 같이 살짝 추가해 줍니다.

CancellationTokenSource ct = new CancellationTokenSource();

ThreadPool.QueueUserWorkItem((arg) =>
{
    Thread.Sleep(5000); // 5초 후에, Cancel 호출
    ct.Cancel();
    Console.WriteLine("Cancel called!");
});

// ct.CancelAfter(5000);

while (true)
{
    byte[] buf = new byte[length];
    Console.WriteLine($"Sending: {buf.Length}");
    Task task = ns.WriteAsync(buf, 0, buf.Length, ct.Token);

    await task;

    totalSent += length;
    count++;
    Console.WriteLine($"[{count}] Sent: {buf.Length}, Total: {totalSent}");
}

실행해 보면, 화면에는 분명히 "Cancel called!" 문자열이 출력되지만 여전히 "await task;" 이후의 코드로는 나아가지 않습니다. (물론, 취소에 따른 예외 발생도 없습니다.) 하지만, 위의 코드를 그대로 .NET Core/5+ 환경, 여기서는 .NET 8 프로젝트에서 만들어 테스트하면 5초 후에 다음과 같은 출력이 나옵니다.

Cancel called!
Unhandled exception. System.OperationCanceledException: The operation was canceled.
   at System.Threading.CancellationToken.ThrowOperationCanceledException()
   at System.Threading.CancellationToken.ThrowIfCancellationRequested()
   at System.Net.Sockets.Socket.AwaitableSocketAsyncEventArgs.ThrowException(SocketError error, CancellationToken cancellationToken)
   at System.Net.Sockets.Socket.AwaitableSocketAsyncEventArgs.System.Threading.Tasks.Sources.IValueTaskSource.GetResult(Int16 token)
   at System.Threading.Tasks.ValueTask.ValueTaskSourceAsTask.<>c.<.cctor>b__4_0(Object state)
--- End of stack trace from previous location ---
   at ConsoleApp5.Program.Main(String[] args)
   at ConsoleApp5.Program.<Main>(String[] args)

보는 바와 같이, CancellationTokenSource.Cancel 호출은 WriteAsync 호출을 대기하던 비동기 작업을 (.NET Framework과는 달리) 취소했습니다.




그 둘 간의 차이는 도대체 뭘까요? 당연히 구현상의 차이가 있겠죠. ^^ 우선, .NET Framework의 NetworkStream.WriteAsync 코드는 그 상위의 Stream 타입에 있는 WriteAsync를 호출합니다.

// referencesource/mscorlib/system/io/stream.cs
// https://github.com/microsoft/referencesource/blob/master/mscorlib/system/io/stream.cs

[HostProtection(ExternalThreading = true)]
[ComVisible(false)]
public virtual Task WriteAsync(Byte[] buffer, int offset, int count, CancellationToken cancellationToken)
{
    // If cancellation was requested, bail early with an already completed task.
    // Otherwise, return a task that represents the Begin/End methods.
    return cancellationToken.IsCancellationRequested // CancellationToken 처리는 I/O 발생 전에만 체크
                ? Task.FromCancellation(cancellationToken)
                : BeginEndWriteAsync(buffer, offset, count); // .NET APM 비동기 호출의 Begin...과 End... 조합
}

// BeginEndWriteAsync 메서드는 CancellationToken 처리가 없음
private Task BeginEndWriteAsync(Byte[] buffer, Int32 offset, Int32 count)
{            
    return TaskFactory<VoidTaskResult>.FromAsyncTrim(
                this, new ReadWriteParameters { Buffer=buffer, Offset=offset, Count=count },
                (stream, args, callback, state) => stream.BeginWrite(args.Buffer, args.Offset, args.Count, callback, state), // cached by compiler
                (stream, asyncResult) => // cached by compiler
                {
                    stream.EndWrite(asyncResult);
                    return default(VoidTaskResult);
                });
}  

보는 바와 같이 WriteAsync 호출에 전달한 CancellationToken은 I/O 발생 전에만 한번 체크하고 이후 I/O 동작을 수행하는 BeginWrite로는 전달하지 않고 있습니다. 당연히, 이렇게 호출한 I/O는 이후 취소할 수 있는 방법이 없습니다.

반면, .NET 8의 WriteAsync는 Socket.SendAsyncForNetworkStream 메서드를 거쳐,

// NetworkStream.WriteAsync

public override Task WriteAsync(byte[] buffer, int offset, int count, CancellationToken cancellationToken)
{
    ValidateBufferArguments(buffer, offset, count);
    ThrowIfDisposed();
    if (!CanWrite)
    {
        throw new InvalidOperationException(SR.net_readonlystream);
    }

    try
    {
        return _streamSocket.SendAsyncForNetworkStream(
            new ReadOnlyMemory<byte>(buffer, offset, count),
            SocketFlags.None,
            cancellationToken).AsTask();
    }
    catch (Exception exception) when (!(exception is OutOfMemoryException))
    {
        throw WrapException(SR.net_io_writefailure, exception);
    }
}

Socket.SendAsyncForNetworkStream -> AwaitableSocketAsyncEventArgs.SendAsyncForNetworkStream -> Socket.SendAsync -> SocketAsyncEventArgs.DoOperationSend를 거치면서 CancellationToken이 계속 전달되고,

// Socket
public partial class Socket
{
    // ...[생략]...

    internal ValueTask SendAsyncForNetworkStream(ReadOnlyMemory<byte> buffer, SocketFlags socketFlags, CancellationToken cancellationToken)
    {
        if (cancellationToken.IsCancellationRequested)
        {
            return ValueTask.FromCanceled(cancellationToken);
        }

        AwaitableSocketAsyncEventArgs saea =
            Interlocked.Exchange(ref _singleBufferSendEventArgs, null) ??
            new AwaitableSocketAsyncEventArgs(this, isReceiveForCaching: false);

        Debug.Assert(saea.BufferList == null);
        saea.SetBuffer(MemoryMarshal.AsMemory(buffer));
        saea.SocketFlags = socketFlags;
        saea.WrapExceptionsForNetworkStream = true;
        return saea.SendAsyncForNetworkStream(this, cancellationToken);
    }

    private bool SendAsync(SocketAsyncEventArgs e, CancellationToken cancellationToken)
    {
        ThrowIfDisposed();

        ArgumentNullException.ThrowIfNull(e);

        // Prepare for and make the native call.
        e.StartOperationCommon(this, SocketAsyncOperation.Send);
        SocketError socketError;
        try
        {
            socketError = e.DoOperationSend(_handle, cancellationToken);
        }
        catch
        {
            // Clear in-use flag on event args object.
            e.Complete();
            throw;
        }

        return socketError == SocketError.IOPending;
    }

    // ...[생략]...

    internal sealed class AwaitableSocketAsyncEventArgs : SocketAsyncEventArgs, IValueTaskSource, IValueTaskSource<int>, IValueTaskSource<Socket>, IValueTaskSource<SocketReceiveFromResult>, IValueTaskSource<SocketReceiveMessageFromResult>
    {
        // ...[생략]...

        public ValueTask SendAsyncForNetworkStream(Socket socket, CancellationToken cancellationToken)
        {
            if (socket.SendAsync(this, cancellationToken))
            {
                _cancellationToken = cancellationToken;
                return new ValueTask(this, _mrvtsc.Version);
            }

            SocketError error = SocketError;

            ReleaseForSyncCompletion();

            return error == SocketError.Success ?
                default :
                ValueTask.FromException(CreateException(error));
        }

        // ...[생략]...
    }
}

SocketAsyncEventArgs의 ProcessIOCPResult 내에서 마침내 cancellationToken에 대해 UnsafeRegister를 호출해 등록한 callback으로 CancelIoEx 호출을 하고 있습니다.

// dotnet/runtime/src/libraries/System.Net.Sockets/src/System/Net/Sockets/SocketAsyncEventArgs.Windows.cs

internal unsafe SocketError DoOperationSend(SafeSocketHandle handle, CancellationToken cancellationToken) => _bufferList == null ?
    DoOperationSendSingleBuffer(handle, cancellationToken) :
    DoOperationSendMultiBuffer(handle);

internal unsafe SocketError DoOperationSendSingleBuffer(SafeSocketHandle handle, CancellationToken cancellationToken)
{
    Debug.Assert(_asyncCompletionOwnership == 0, $"Expected 0, got {_asyncCompletionOwnership}");

    fixed (byte* bufferPtr = &MemoryMarshal.GetReference(_buffer.Span))
    {
        NativeOverlapped* overlapped = AllocateNativeOverlapped();
        try
        {
            var wsaBuffer = new WSABuffer { Length = _count, Pointer = (IntPtr)(bufferPtr + _offset) };

            SocketError socketError = Interop.Winsock.WSASend(
                handle,
                &wsaBuffer,
                1,
                out int bytesTransferred,
                _socketFlags,
                overlapped,
                IntPtr.Zero);

            return ProcessIOCPResult(socketError == SocketError.Success, bytesTransferred, ref overlapped, _buffer, cancellationToken);
        }
        catch when (overlapped is not null)
        {
            FreeNativeOverlapped(ref overlapped);
            throw;
        }
    }
}

private unsafe SocketError ProcessIOCPResult(bool success, int bytesTransferred, ref NativeOverlapped* overlapped, Memory<byte> bufferToPin, CancellationToken cancellationToken)
{
    SocketError socketError = GetIOCPResult(success, ref overlapped);
    SocketFlags socketFlags = SocketFlags.None;

    if (socketError == SocketError.IOPending)
    {
        // Perform any required setup of the asynchronous operation.  Everything set up here needs to be undone in CompleteCore.CleanupIOCPResult.
        if (cancellationToken.CanBeCanceled)
        {
            Debug.Assert(_pendingOverlappedForCancellation == null);
            _pendingOverlappedForCancellation = overlapped;
            _registrationToCancelPendingIO = cancellationToken.UnsafeRegister(static s =>
            {
                // Try to cancel the I/O.  We ignore the return value (other than for logging), as cancellation
                // is opportunistic and we don't want to fail the operation because we couldn't cancel it.
                var thisRef = (SocketAsyncEventArgs)s!;
                SafeSocketHandle handle = thisRef._currentSocket!.SafeHandle;
                if (!handle.IsClosed)
                {
                    try
                    {
                        // 아래의 글은 OVERLAPPED 사용 시 CancelIO의 중요성을 보여줍니다.
                        // The case of the crash when destructing a std::map
                        // https://devblogs.microsoft.com/oldnewthing/20240927-00/?p=110320
                        bool canceled = Interop.Kernel32.CancelIoEx(handle, thisRef._pendingOverlappedForCancellation);
                        if (NetEventSource.Log.IsEnabled())
                        {
                            NetEventSource.Info(thisRef, canceled ?
                                "Socket operation canceled." :
                                $"CancelIoEx failed with error '{Marshal.GetLastPInvokeError()}'.");
                        }
                    }
                    catch (ObjectDisposedException)
                    {
                        // Ignore errors resulting from the SafeHandle being closed concurrently.
                    }
                }
            }, this);
        }
        if (!bufferToPin.Equals(default))
        {
            _singleBufferHandle = bufferToPin.Pin();
        }

        // ...[생략]...
    }

    // ...[생략]...
    return socketError;
}

(뭔가 코드가 많지만) ^^ 동작 자체는 깔끔하게 취소가 됩니다.




약간의 수고를 곁들인다면 .NET Framework 버전에서도 Cancel 자체의 과정은 병합할 수 있습니다. 이에 대해서는 다음의 글에서 자세하게 소개하고 있는데요,

Is there a way I can cause a running method to stop immediately with a cts.Cancel();
; https://stackoverflow.com/questions/59243161/is-there-a-way-i-can-cause-a-running-method-to-stop-immediately-with-a-cts-cance/59267214#59267214

위의 내용을 이번 글에서 작성한 .NET Framework 코드에 병합한다면 다음과 같은 식으로 할 수 있습니다.

while (true)
{
    byte[] buf = new byte[length];
    Console.WriteLine($"Sending: {buf.Length}");
    Task task = ns.WriteAsync(buf, 0, buf.Length, ct.Token);

    var cancelable = new Task(() => { }, ct.Token);
    await Task.WhenAny(task, cancelable);

    if (ct.IsCancellationRequested) // 혹은 ct.Token.ThrowIfCancellationRequested(); 호출로 cancel 예외 발생
    {
        Console.WriteLine("Task cancelled!");
        break;
    }

    totalSent += length;
    count++;
    Console.WriteLine($"[{count}] Sent: {buf.Length}, Total: {totalSent}");
}

단지, 위와 같은 경우에는 WriteAsync 호출 시 커널로 넘어간 비동기 I/O에 대한 IRP가 취소된 것은 아니므로 buffer가 pinning 된 채로 살아있게 됩니다. 하지만, 현실적으로 위와 같은 경우에는 어차피 소켓을 정리하는 수순으로 넘어갈 것이므로 이후 Socket.Dispose 단계를 거치면 커널의 소켓 I/O도 해제될 것이므로 결국엔 버퍼가 정리됩니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/28/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  [83]  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11862정성태4/7/201920218개발 환경 구성: 437. .NET EXE의 ASLR 기능을 끄는 방법
11861정성태4/6/201919632디버깅 기술: 126. windbg - .NET x86 CLR2/CLR4 EXE의 EntryPoint
11860정성태4/5/201923533오류 유형: 527. Visual C++ 컴파일 오류 - error C2220: warning treated as error - no 'object' file generated
11859정성태4/4/201920776디버깅 기술: 125. WinDbg로 EXE의 EntryPoint에서 BP 거는 방법
11858정성태3/27/201921649VC++: 129. EXE를 LoadLibrary로 로딩해 PE 헤더에 있는 EntryPoint를 직접 호출하는 방법파일 다운로드1
11857정성태3/26/201919543VC++: 128. strncpy 사용 시 주의 사항(Linux / Windows)
11856정성태3/25/201919786VS.NET IDE: 134. 마이크로소프트의 CoreCLR 프로파일러 리눅스 예제를 Visual Studio F5 원격 디버깅하는 방법 [1]파일 다운로드1
11855정성태3/25/201921964개발 환경 구성: 436. 페이스북 HTTPS 인증을 localhost에서 테스트하는 방법
11854정성태3/25/201917634VS.NET IDE: 133. IIS Express로 호스팅하는 사이트를 https로 접근하는 방법
11853정성태3/24/201920419개발 환경 구성: 435. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면? - 두 번째 이야기 [1]
11852정성태3/20/201919630개발 환경 구성: 434. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면?파일 다운로드1
11851정성태3/19/201923378Linux: 8. C# - 리눅스 환경에서 DllImport 대신 라이브러리 동적 로드 처리 [2]
11850정성태3/18/201922454.NET Framework: 813. C# async 메서드에서 out/ref/in 유형의 인자를 사용하지 못하는 이유
11849정성태3/18/201921781.NET Framework: 812. pscp.exe 기능을 C#으로 제어하는 방법파일 다운로드1
11848정성태3/17/201918538스크립트: 14. 윈도우 CMD - 파일이 변경된 경우 파일명을 변경해 복사하고 싶다면?
11847정성태3/17/201923010Linux: 7. 리눅스 C/C++ - 공유 라이브러리 동적 로딩 후 export 함수 사용 방법파일 다운로드1
11846정성태3/15/201921659Linux: 6. getenv, setenv가 언어/운영체제마다 호환이 안 되는 문제
11845정성태3/15/201921773Linux: 5. Linux 응용 프로그램의 (C++) so 의존성 줄이기(ReleaseMinDependency) [3]
11844정성태3/14/201923109개발 환경 구성: 434. Visual Studio 2019 - 리눅스 프로젝트를 이용한 공유/실행(so/out) 프로그램 개발 환경 설정 [1]파일 다운로드1
11843정성태3/14/201918043기타: 75. MSDN 웹 사이트를 기본으로 영문 페이지로 열고 싶다면?
11842정성태3/13/201916403개발 환경 구성: 433. 마이크로소프트의 CoreCLR 프로파일러 예제를 Visual Studio CMake로 빌드하는 방법 [1]파일 다운로드1
11841정성태3/13/201916703VS.NET IDE: 132. Visual Studio 2019 - CMake의 컴파일러를 기본 g++에서 clang++로 변경
11840정성태3/13/201918323오류 유형: 526. 윈도우 10 Ubuntu App 환경에서는 USB 외장 하드 접근 불가
11839정성태3/12/201922295디버깅 기술: 124. .NET Core 웹 앱을 호스팅하는 Azure App Services의 프로세스 메모리 덤프 및 windbg 분석 개요 [3]
11838정성태3/7/201925900.NET Framework: 811. (번역글) .NET Internals Cookbook Part 1 - Exceptions, filters and corrupted processes [1]파일 다운로드1
11837정성태3/6/201939836기타: 74. 도서: 시작하세요! C# 7.3 프로그래밍 [10]
... 76  77  78  79  80  81  82  [83]  84  85  86  87  88  89  90  ...