Microsoft MVP성태의 닷넷 이야기
닷넷: 2239. C# - WAV 파일의 PCM 데이터 생성 및 출력 [링크 복사], [링크+제목 복사],
조회: 1017
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 9개 있습니다.)
.NET Framework: 618. C# - NAudio를 이용한 MP3 파일 재생
; https://www.sysnet.pe.kr/2/0/11092

닷넷: 2236. C# - Audio 장치 열람 (Windows Multimedia, NAudio)
; https://www.sysnet.pe.kr/2/0/13594

닷넷: 2237. C# - Audio 장치 열기 (Windows Multimedia, NAudio)
; https://www.sysnet.pe.kr/2/0/13595

닷넷: 2238. C# - WAV 기본 파일 포맷
; https://www.sysnet.pe.kr/2/0/13596

닷넷: 2239. C# - WAV 파일의 PCM 데이터 생성 및 출력
; https://www.sysnet.pe.kr/2/0/13597

닷넷: 2240. C# - WAV 파일 포맷 + LIST 헤더
; https://www.sysnet.pe.kr/2/0/13598

닷넷: 2241. C# - WAV 파일의 PCM 사운드 재생(Windows Multimedia)
; https://www.sysnet.pe.kr/2/0/13599

닷넷: 2243. C# - PCM 사운드 재생(NAudio)
; https://www.sysnet.pe.kr/2/0/13601

닷넷: 2244. C# - PCM 오디오 데이터를 연속(Streaming) 재생 (Windows Multimedia)
; https://www.sysnet.pe.kr/2/0/13602




C# - WAV 파일의 PCM 데이터 생성 및 출력

지난 글에서,

C# - WAV 기본 파일 포맷
; https://www.sysnet.pe.kr/2/0/13596

WAV 파일의 간단한 헤더 구조를 봤는데요, 그 덕분에 적절한 PCM 데이터만 있다면 금방 wav 파일을 만들 수 있습니다. 실제로 해볼까요? ^^

우선, 적당한 PCM 데이터를 생성해야 하는데요, 사실 PCM은 단순히 음의 크기를 나타내는 배열 형식의 자료 구조이기 때문에 간단하게 Octave에서 다음과 같이 처리할 수 있습니다.

# doremi.m
# https://docs.octave.org/v4.0.0/Two_002dDimensional-Plots.html

sample_rate = 22050;

frequency = [262 294 330 349 392 440 494 523];  # 도레미...의 주파수
sound = []
t = 0:1/sample_rate:1;

for doremi_freq = frequency
  s = cos(2*pi*doremi_freq*t);
  sound = [sound s];
endfor

22Khz 샘플링으로 "도, 레, 미, 파, 솔, 라, 시, 도"에 해당하는 주파수의 데이터를 각각 1초씩 생성해 sound 변수에 넣었습니다. 일부 데이터를 plot으로 그려보면 단순히 -1~+1 사이에서 주파수에 따라 요동치는 간단한 형식입니다.

>> plot(t(1:200), sound(1:200));

octave_cosine_wave_1.png

직접 소리를 내 확인하는 것도 가능한데요, soundsc 함수를 사용하면 ^^ 도레미... 음이 1초 간격으로 들릴 것입니다.

>> doremi;
sound = [](0x0)

>> soundsc(sound, sample_rate)

자, 그럼 이 데이터를 binary 포맷으로 저장하고,

>> save -binary test.pcm sound

지난 글에 소개한 Octave Reader를 통해 C#에서 PCM 데이터 파일을 읽어들입니다. 단지, 현재 Octave가 출력한 PCM 데이터가 -1~+1 범위의 double 값이므로, wav 파일에서 PCM 데이터로 동작하기 위해서는 이 값을 정수 형태로 바꿔야 합니다. 이를 위해 다음과 같이 보조 메서드를 하나 추가해 줍니다. (아니면, 애당초 Octave 측에서 정수로 바뀐 데이터를 출력해도 됩니다.)

// https://www.sysnet.pe.kr/2/0/13324#src
public struct BinaryOctaveFile
{
    //  ...[생략]...

    public short[] PCMDataAsShorts()
    {
        int dataCount = Rows * Columns;
        short[] data = new short[dataCount];

        for (int i = 0; i < dataCount; i ++)
        {
            data[i] = (short)(Data[i] * 32767);
        }

        return data;
    }
}

자, 그럼 이 메서드로 다음과 같이 Octave가 생성한 PCM 데이터를 읽어내 WAV 헤더 파일과 함께 출력해 주는 Create 메서드에 전달하면 wav 파일이 만들어집니다.

{
    BinaryOctaveFile octave = BinaryOctaveFile.Read(@"test.pcm");
    short[] data = octave.PCMDataAsShorts();

    byte[] buffer = new byte[data.Length * 2];
    Buffer.BlockCopy(data, 0, buffer, 0, buffer.Length);

    // Octave에서 생성한 데이터 유형: sample_rate = 22050
    //                              bits_per_sample = 16
    //                              channels = 1
    WaveFile.Create(@"C:\Temp\test.wav", 22050, 16, 1, buffer);
}

이렇게 저장한 파일이 정상적인지, 다시 WaveFile로 읽어들여 포맷을 체크할 수 있습니다. ^^

{
    BinaryOctaveFile octave = BinaryOctaveFile.Read(@"test.pcm");
    short[] data = octave.PCMDataAsShorts();

    byte[] buffer = new byte[data.Length * 2];
    Buffer.BlockCopy(data, 0, buffer, 0, buffer.Length);

    WaveFile.Create(@"C:\Temp\test.wav", 22050, 16, 1, buffer);
}

{
    string waveFilePath = @"C:\Temp\test.wav";
    WaveFile wf = new WaveFile(waveFilePath);

    Console.WriteLine(wf.Header);
}

/* 출력 결과
ChunkId: RIFF, FileSize: 352852, TypeHeader: WAVE, FormatMarker: fmt , SubChunkSize: 16, AudioFormat: 1, Channels: 1, SampleRate: 22050, ByteRate: 44100, BlockAlign: 2, BitsPerSample: 16, DataChunkHeader: data, DataSize: 352816
*/

헤더 규약에 맞게 wav 파일을 생성했으니, 당연히 읽기 시에도 출력이 정상적으로 나오고, 게다가 Media Player 등을 이용해 test.wav 파일을 재생해 보면 ^^ 소리가 잘 들립니다.




하는 김에, 스테레오용 PCM도 생성해 볼까요? 사실 Mono는 단일 음이 연속해서 Byte[] 버퍼에 채워지는 형식이지만,

[M1 M2 M3 ...]

Stereo 형식이면 Left Channel과 Right Channel 음이 번갈아서 버퍼에 채워지게 됩니다.

[L1 R1 L2 R2 L3 R3 ...]

따라서, 이전의 도레미... 음을 다음과 같이 "repelem"을 이용해 (이번엔 44Khz의) 동일한 음으로 Left/Right Channel을 생성할 수 있습니다.

sample_rate = 44100;

frequency = [262 294 330 349 392 440 494 523];
sound = []
t = 0:1/sample_rate:1;

for doremi_freq = frequency
  s = cos(2*pi*doremi_freq*t);

  s = repelem(s, 2);
  sound = [sound s];
endfor

역시 이렇게 생성한 sound 데이터를 test_stereo.pcm 파일로 저장하고 wav 헤더를 추가해 주면,

{
    BinaryOctaveFile octave = BinaryOctaveFile.Read(@"test_stereo.pcm");
    short[] data = octave.PCMDataAsShorts();

    byte[] buffer = new byte[data.Length * 2];
    Buffer.BlockCopy(data, 0, buffer, 0, buffer.Length);

    // Octave에서 생성한 데이터 유형: sample_rate = 44100
    //                              channels = 2
    // 데이터를 2바이트로 변환:       bits_per_sample = 16
    WaveFile.Create(@"C:\Temp\test_stereo.wav", 44100, 16, 2, buffer);
}

동작하는 test_stereo.wav 음악 파일을 만들 수 있습니다.

하다 보니 재미있군요. ^^ 그럼 이번에는 Stereo지만, Right Channel 음을 무음으로 만들어 보겠습니다. 이를 위해 Octave에서는 2번째 데이터에 대해 0을 만들 수 있도록 아래와 같은 조작을 추가합니다.

sample_rate = 44100;

frequency = [262 294 330 349 392 440 494 523];
sound = []
t = 0:1/sample_rate:1;
even_pos = 2:2:size(t)(2)*2;

for doremi_freq = frequency
  s = cos(2*pi*doremi_freq*t);

  s = repelem(s, 2);
  s(even_pos) = 0;
  sound = [sound s];
endfor

재생해 보면, 의도했던 대로 오른쪽 이어폰에서 소리가 발생하지 않습니다.




마지막으로, Octave의 PCM 데이터는 -1~+1 사이의 double 값을 가진, 어찌 보면 정규화된 형식이기 때문에 이 값의 bitsPerSample을 정하는 것은 읽어들이는 쪽에서 알아서 하면 됩니다. 앞선 예제 코드에서는 해당 데이터를 2바이트로 복원했었는데요, 당연히 곱해주는 값을 바꿔 4바이트로 하는 것도 가능합니다.

using System.Text;

namespace Octave;

public struct BinaryOctaveFile
{
    // ...[생략]...

    public int[] PCMDataAsInt32s()
    {
        int dataCount = Rows * Columns;
        int[] data = new int[dataCount];

        for (int i = 0; i < dataCount; i++)
        {
            data[i] = (int)(Data[i] * 2147483647);
        }

        return data;
    }
}

그럼 파일로 저장할 때도 다음과 같이 변경해야 합니다.

{
    BinaryOctaveFile octave = BinaryOctaveFile.Read(@"test_half_stereo.pcm");
    int[] data = octave.PCMDataAsInt32s();

    byte[] buffer = new byte[data.Length * 4];
    Buffer.BlockCopy(data, 0, buffer, 0, buffer.Length);

    // Octave에서 생성한 데이터 유형: sample_rate = 44100
    //                              channels = 2
    // 데이터를 4바이트로 변환:       bits_per_sample = 32
    WaveFile.Create(@"C:\Temp\test_half_stereo.wav", 44100, 32, 2, buffer);
}

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그나저나, 지난 글에 소개만 했던 WaveFile.Create 메서드는 어쩌면 WAVE 헤더를 읽을 때 사용했던 Marshal.PtrToStructure 호출에 대해,

private WaveHeader structFromBytes(byte[] buffer)
{
    GCHandle pData = GCHandle.Alloc(buffer, GCHandleType.Pinned);
    WaveHeader instance = Marshal.PtrToStructure<WaveHeader>(pData.AddrOfPinnedObject());
    pData.Free();

    return instance;
}

그와 짝을 이루는 Marshal.StructureToPtr로 처리할 수도 있었는데요, 아쉽게도 예외 사항이 하나 있어 그렇게 처리할 수는 없었습니다. 왜냐하면 ChunkId와 같은 문자열 필드가,

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Ansi)]
public struct WaveHeader
{
    [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 4)]
    public string ChunkId;

    // ...[생략]...
}

크기는 4로 정해져 있지만, null을 포함하지 않는 크기이기 때문입니다. 그래서 저 필드에 "RIFF"가 들어 있는 것을 Marshal.StructureToPtr로 쓰게 되면 4바이트라는 제약에 null 처리까지 돼 "RIF\0"으로 직렬화되는 문제가 있습니다.

어쩔 수 없습니다. ^^ Marshal.StructureToPtr에 대해서는 CustomMarshaler도 동작하지 않기 때문에 직접 출력을 제어해야 합니다. 그런 이유로, 결국 일일이 헤더 필드 하나하나 쓰도록 만들게 된 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13361정성태5/31/20233815오류 유형: 862. Facebook - ASP.NET/WebClient 사용 시 graph.facebook.com/me 호출에 대해 403 Forbidden 오류
13360정성태5/31/20233200오류 유형: 861. WSL/docker - failed to start shim: start failed: io.containerd.runc.v2: create new shim socket
13359정성태5/19/20233507오류 유형: 860. Docker Desktop - k8s 초기화 무한 반복한다면?
13358정성태5/17/20233849.NET Framework: 2125. C# - Semantic Kernel의 Semantic Memory 사용 예제 [1]파일 다운로드1
13357정성태5/16/20233643.NET Framework: 2124. C# - Semantic Kernel의 Planner 사용 예제파일 다운로드1
13356정성태5/15/20233968DDK: 10. Device Driver 테스트 설치 관련 오류 (Code 37, Code 31) 및 인증서 관련 정리
13355정성태5/12/20233899.NET Framework: 2123. C# - Semantic Kernel의 ChatGPT 대화 구현 [1]파일 다운로드1
13354정성태5/12/20234144.NET Framework: 2122. C# - "Use Unicode UTF-8 for worldwide language support" 설정을 한 경우, 한글 입력이 '\0' 문자로 처리
13352정성태5/12/20233763.NET Framework: 2121. C# - Semantic Kernel의 대화 문맥 유지파일 다운로드1
13351정성태5/11/20234273VS.NET IDE: 185. Visual Studio - 원격 Docker container 내에 실행 중인 응용 프로그램에 대한 디버깅 [1]
13350정성태5/11/20233541오류 유형: 859. Windows Date and Time - Unable to continue. You do not have permission to perform this task
13349정성태5/11/20233844.NET Framework: 2120. C# - Semantic Kernel의 Skill과 Function 사용 예제파일 다운로드1
13348정성태5/10/20233765.NET Framework: 2119. C# - Semantic Kernel의 "Basic Loading of the Kernel" 예제
13347정성태5/10/20234187.NET Framework: 2118. C# - Semantic Kernel의 Prompt chaining 예제파일 다운로드1
13346정성태5/10/20234027오류 유형: 858. RDP 원격 환경과 로컬 PC 간의 Ctrl+C, Ctrl+V 복사가 안 되는 문제
13345정성태5/9/20235419.NET Framework: 2117. C# - (OpenAI 기반의) Microsoft Semantic Kernel을 이용한 자연어 처리 [1]파일 다운로드1
13344정성태5/9/20236565.NET Framework: 2116. C# - OpenAI API 사용 - 지원 모델 목록 [1]파일 다운로드1
13343정성태5/9/20234457디버깅 기술: 192. Windbg - Hyper-V VM으로 이더넷 원격 디버깅 연결하는 방법
13342정성태5/8/20234359.NET Framework: 2115. System.Text.Json의 역직렬화 시 필드/속성 주의
13341정성태5/8/20234046닷넷: 2114. C# 12 - 모든 형식의 별칭(Using aliases for any type)
13340정성태5/8/20234147오류 유형: 857. Microsoft.Data.SqlClient.SqlException - 0x80131904
13339정성태5/6/20234942닷넷: 2113. C# 12 - 기본 생성자(Primary Constructors)
13338정성태5/6/20234342닷넷: 2112. C# 12 - 기본 람다 매개 변수파일 다운로드1
13337정성태5/5/20234849Linux: 59. dockerfile - docker exec로 container에 접속 시 자동으로 실행되는 코드 적용
13336정성태5/4/20234674.NET Framework: 2111. C# - 바이너리 출력 디렉터리와 연관된 csproj 설정
13335정성태4/30/20234714.NET Framework: 2110. C# - FFmpeg.AutoGen 라이브러리를 이용한 기본 프로젝트 구성 - Windows Forms파일 다운로드1
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...