Microsoft MVP성태의 닷넷 이야기
닷넷: 2247. C# - tensorflow 연동 (MNIST 예제) [링크 복사], [링크+제목 복사],
조회: 9583
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - tensorflow 연동 (MNIST 예제)

요즘 접하기 쉬운 예제로 MNIST 손글씨 인식을 C#에서 tensorflow와 연동해 만들어 보겠습니다. 여기서 중요한 것은, Model을 구해야 하는 것인데요 ^^ 그 부분은 그냥 파이썬 환경에서 자유롭게 코딩해 구하기만 하면 됩니다.

예를 들어, 아래의 MNIST 예제는 my_mnist_model.keras 파일로 모델을 저장하고 있습니다.

// 케라스 창시자에게 배우는 딥러닝
// https://github.com/gilbutITbook/080315/blob/main/chapter02_mathematical-building-blocks.ipynb

import setuptools.dist
from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
    layers.Dense(512, activation='relu'),
    layers.Dense(10, activation='softmax')
    ])

model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'{test_acc}')

# https://www.tensorflow.org/tutorials/keras/save_and_load?hl=ko
model.save('my_mnist_model.keras')

my_mnist_model.keras 파일의 크기는 3MB 정도 됩니다. 이렇게 구한 Model 파일은 C# 프로젝트에 추가/배포해, 실행 시 C#에서 Python.NET을 이용해 저 Model 파일을 로드해 활용할 것입니다.




자, 그럼 본격적으로 위에서 만든 MNIST 필기체 인식 Model을 C#에서 Python과 연동해 볼까요? ^^

이를 위해, 모델을 이용한 predict 코드를 호출하는 파이썬 코드를 다음과 같이 만들어 줍니다.

# mnist_predict.py

import setuptools.dist
import tensorflow as tf
import numpy as np

model = tf.keras.models.load_model('my_mnist_model.keras')

def predict(img):
    imgs = np.expand_dims(img, axis=0)
    predictions = model.predict(imgs, verbose=0)
    predict_number = np.argmax(predictions[0])
    return (predict_number.item(), predictions[0][predict_number].item())

위의 predict 함수는 model.predict 호출 시 해당 이미지로 판정되는 숫자와 그 확률을 반환합니다.

그럼, 이제 Python.NET을 이용한 C# 코드에서는 이를 호출하는 코드만 다음과 같이 작성해 주면 됩니다.

using Python.Runtime;

namespace ConsoleApp3;

internal class Program
{
    static void Main(string[] args)
    {
        Runtime.PythonDLL = @".\python\python312.dll";

        PythonEngine.Initialize();

        using (_ = Py.GIL())
        {
            DisableTensorflowLog();

            dynamic npModule = Py.Import("numpy");

            {
                dynamic sys = Py.Import("sys");
                string dirPath = Path.GetDirectoryName(typeof(Program).Assembly.Location) ?? Environment.CurrentDirectory;
                sys.path.append(dirPath);
            }

            float[]? testImgArray = // ... 28x28 크기의 이미지 데이터 ...;
            dynamic npArray = npModule.array(testImgArray);

            {
                var pyFile = Py.Import(Path.GetFileNameWithoutExtension("mnist_predict"));

                dynamic results = pyFile.InvokeMethod("predict", npArray);

                int expected = results[0];
                double percentage = results[1];

                Console.WriteLine($"{expected}: {percentage:P0}");
            }
        }

        PythonEngine.Shutdown();
    }
}

만약 testImgArray에 7과 비슷한 숫자의 이미지를 담고 있는 28x28 크기의 버퍼가 있다면 위의 프로그램을 실행 시 "7: 100%"와 유사한 출력이 나옵니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)

만약 지난 글에 설명한 대로 CopyToOutputDirectory 설정을 했다면, 위의 예제를 실행했을 때 "C:\temp\ConsoleApp3\net8.0" 디렉터리에 출력이 모였을 것입니다. 해당 출력 파일만 다른 컴퓨터에 그대로 복사하면 (당연히 별도의 파이썬 설치 없이) 정상적으로 실행까지 됩니다.

한 가지 문제점이라면, 위의 경우 net8.0 출력에 있는 전체 바이너리의 크기가 (python + tensorflow까지 포함하므로) 1.6GB 정도, 압축하면 480MB 정도 됩니다. 만약 대상 컴퓨터에 파이썬 tensorflow 환경이 설치돼 있다면 이 용량을 없앨 수 있지만 그렇지 않은 경우라면... 뭔가 있어 보이는 ^^ 응용 프로그램의 크기를 자랑합니다.




참고로, 위의 코드를 Windows 10+ 환경에서 Python 3.12.0 버전으로 실행하면 load_model 시에 다음과 같은 오류가 발생합니다.

Traceback (most recent call last):
  File "C:\temp\ConsoleApp3\net8.0\python\test.py", line 36, in <module>
    model2 = tf.keras.models.load_model('my_mnist_model.keras')
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_api.py", line 176, in load_model
    return saving_lib.load_model(
           ^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 152, in load_model
    return _load_model_from_fileobj(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 207, in _load_model_from_fileobj
    _raise_loading_failure(error_msgs)
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 295, in _raise_loading_failure
    raise ValueError(msg)
ValueError: A total of 1 objects could not be loaded. Example error message for object <keras.src.optimizers.adam.Adam object at 0x000001CBB0BCFBF0>:

The shape of the target variable and the shape of the target value in `variable.assign(value)` must match. variable.shape=(10,), Received: value.shape=(512, 10). Target variable: <KerasVariable shape=(10,), dtype=float32, path=adam/dense_1_bias_momentum>

List of objects that could not be loaded:
[<keras.src.optimizers.adam.Adam object at 0x000001CBB0BCFBF0>]))

3.12.2 이상의 버전에서 하면 오류가 발생하지 않습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/24/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  [73]  74  75  ...
NoWriterDateCnt.TitleFile(s)
12112정성태1/12/202016837오류 유형: 589. PowerShell - 원격 Invoke-Command 실행 시 "WinRM cannot complete the operation" 오류 발생
12111정성태1/12/202020639디버깅 기술: 155. C# - KernelMemoryIO 드라이버를 이용해 실행 프로그램을 숨기는 방법(DKOM: Direct Kernel Object Modification) [16]파일 다운로드1
12110정성태1/11/202020041디버깅 기술: 154. Patch Guard로 인해 블루 스크린(BSOD)가 발생하는 사례 [5]파일 다운로드1
12109정성태1/10/202016729오류 유형: 588. Driver 프로젝트 빌드 오류 - Inf2Cat error -2: "Inf2Cat, signability test failed."
12108정성태1/10/202017582오류 유형: 587. Kernel Driver 시작 시 127(The specified procedure could not be found.) 오류 메시지 발생
12107정성태1/10/202018761.NET Framework: 877. C# - 프로세스의 모든 핸들을 열람 - 두 번째 이야기
12106정성태1/8/202019758VC++: 136. C++ - OSR Driver Loader와 같은 Legacy 커널 드라이버 설치 프로그램 제작 [1]
12105정성태1/8/202018231디버깅 기술: 153. C# - PEB를 조작해 로드된 DLL을 숨기는 방법
12104정성태1/7/202019499DDK: 9. 커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램 [4]
12103정성태1/7/202022626DDK: 8. Visual Studio 2019 + WDK Legacy Driver 제작- Hello World 예제 [1]파일 다운로드2
12102정성태1/6/202018903디버깅 기술: 152. User 권한(Ring 3)의 프로그램에서 _ETHREAD 주소(및 커널 메모리를 읽을 수 있다면 _EPROCESS 주소) 구하는 방법
12101정성태1/5/202019287.NET Framework: 876. C# - PEB(Process Environment Block)를 통해 로드된 모듈 목록 열람
12100정성태1/3/202016716.NET Framework: 875. .NET 3.5 이하에서 IntPtr.Add 사용
12099정성태1/3/202019606디버깅 기술: 151. Windows 10 - Process Explorer로 확인한 Handle 정보를 windbg에서 조회 [1]
12098정성태1/2/202019333.NET Framework: 874. C# - 커널 구조체의 Offset 값을 하드 코딩하지 않고 사용하는 방법 [3]
12097정성태1/2/202017449디버깅 기술: 150. windbg - Wow64, x86, x64에서의 커널 구조체(예: TEB) 구조체 확인
12096정성태12/30/201919991디버깅 기술: 149. C# - DbgEng.dll을 이용한 간단한 디버거 제작 [1]
12095정성태12/27/201921745VC++: 135. C++ - string_view의 동작 방식
12094정성태12/26/201919493.NET Framework: 873. C# - 코드를 통해 PDB 심벌 파일 다운로드 방법
12093정성태12/26/201919129.NET Framework: 872. C# - 로딩된 Native DLL의 export 함수 목록 출력파일 다운로드1
12092정성태12/25/201917760디버깅 기술: 148. cdb.exe를 이용해 (ntdll.dll 등에 정의된) 커널 구조체 출력하는 방법
12091정성태12/25/201920174디버깅 기술: 147. pdb 파일을 다운로드하기 위한 symchk.exe 실행에 필요한 최소 파일 [1]
12090정성태12/24/201920217.NET Framework: 871. .NET AnyCPU로 빌드된 PE 헤더의 로딩 전/후 차이점 [1]파일 다운로드1
12089정성태12/23/201919123디버깅 기술: 146. gflags와 _CrtIsMemoryBlock을 이용한 Heap 메모리 손상 여부 체크
12088정성태12/23/201918146Linux: 28. Linux - 윈도우의 "Run as different user" 기능을 shell에서 실행하는 방법
12087정성태12/21/201918575디버깅 기술: 145. windbg/sos - Dictionary의 entries 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
... 61  62  63  64  65  66  67  68  69  70  71  72  [73]  74  75  ...