Microsoft MVP성태의 닷넷 이야기
닷넷: 2259. C# - decimal 저장소의 비트 구조 [링크 복사], [링크+제목 복사],
조회: 9081
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 8개 있습니다.)
.NET Framework: 539. C# - 부동 소수 계산 왜 이렇게 나오죠? (1)
; https://www.sysnet.pe.kr/2/0/10872

.NET Framework: 540. C# - 부동 소수 계산 왜 이렇게 나오죠? (2)
; https://www.sysnet.pe.kr/2/0/10873

.NET Framework: 608. double 값을 구할 때는 반드시 피연산자를 double로 형변환!
; https://www.sysnet.pe.kr/2/0/11055

개발 환경 구성: 440. C#, C++ - double의 Infinity, NaN 표현 방식
; https://www.sysnet.pe.kr/2/0/11896

기타: 85. 단정도/배정도 부동 소수점의 정밀도(Precision)에 따른 형변환 손실
; https://www.sysnet.pe.kr/2/0/13212

닷넷: 2257. C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

닷넷: 2258. C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

닷넷: 2259. C# - decimal 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13619




C# - decimal 저장소의 비트 구조

decimal의 경우 float/double과 내부적인 처리는 유사하지만,

C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

그것들의 관계처럼 단순히 지수부와 가수부에 대한 비트 수만 확장한 것이 아니라, 지수부의 진법을 2가 아니라 10으로 취급한다는 점이 다릅니다. 마이크로소프트의 공식 문서는 (어딘가 있을 듯한데) 찾을 수 없었지만 아래의 글에 이에 대한 내용이 나옵니다.

Decimal floating point in .NET
; https://csharpindepth.com/articles/Decimal

결국, decimal은 16바이트이고 8바이트씩 나눠 다룰 수 있는데 이것을 bit mask로 표현하면 이렇게 구분할 수 있습니다.

[하위 8바이트(64비트)]
가수부 64비트: 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111

[상위 8바이트(64비트)]
상위 가수부 32비트: 1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000
지수부 5비트:       0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000
Sign 1비트:        0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000

따라서, 가수부는 총 96비트, 즉 2의 96승을 다룰 수 있고, 지수부는 5비트로 32까지 다룰 수 있지만 실제로 사용하는 범위는 0~28까지라고 합니다. 그래서 지수부의 경우 1_1111 비트 마스크 중 사실상 0_1111로 처리해도 무방합니다.

예를 하나 들어볼까요? ^^

18_446_744_073_709_551_616m 숫자에 대해 각각의 부호 비트, 지수부, 가수부를 다음과 같은 코드로 구할 수 있습니다.

decimal m = 18_446_744_073_709_551_615m + 1m;

Console.WriteLine($"decimal value: {m}");
byte* pDecimal = (byte*)&m;
ParseDecimalFormat(pDecimal);

private static unsafe void ParseDecimalFormat(byte* pDecimal)
{
    // 1bit - signbit
    // 5bits - exponent (only valid 0~28), 10의 n 승
    // 96bits - mantissa

    // 하위 - 64bits mantissa
    // 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;
    // 0111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;

    // 상위 - 64bits
    // 1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000; // 상위 32bits - 추가 mantissa
    // 0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000; // 5bits - exponent
    // 0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000; // 1bit - sign

    byte* hiPart = pDecimal;
    byte* loPart = pDecimal + 8;

    bool signBit = GetDecimalSignBit(hiPart);
    Console.WriteLine($"sign bit: {signBit}");

    ulong exponentBits = GetDecimalExponents(hiPart);
    Console.WriteLine($"10-exponent: {exponentBits}");

    BigInteger mantissaBits = GetMantissa(hiPart, loPart);
    Console.WriteLine($"Mantissa: {mantissaBits}");
}

private static unsafe bool GetDecimalSignBit(byte* hiPart)
{
    ulong hi = *(ulong*)hiPart;
    ulong signBit = hi & 0b_0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000;

    return signBit != 0;
}

private static unsafe ulong GetDecimalExponents(byte* hiPart)
{
    ulong hi = *(ulong*)hiPart;
    ulong exponentBits = hi & 0b_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000;
    return exponentBits >> 16;
}

private static unsafe BigInteger GetMantissa(byte* hiPart, byte* loPart)
{
    ulong lo = *(ulong*)loPart;
    BigInteger lower = new BigInteger(lo);

    ulong hi = *(ulong*)hiPart;
    ulong hiMantissa = hi & 0b_1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000;
    hiMantissa = (hiMantissa >> 32);

    BigInteger large = hiMantissa;
    large = large << 64;

    Console.WriteLine($"Low mantissa: {lo}");
    Console.WriteLine($"Hig mantissa: {large}");

    return large + lower;
}

실행 결과는 다음과 같습니다.

decimal value: 18446744073709551616
sign bit: False
10-exponent: 0
Low mantissa: 0
Hig mantissa: 18446744073709551616
Mantissa: 18446744073709551616

숫자에 소수점이 없어서 말 그대로 96비트의 숫자를 다루는 형태입니다. 반면 -0.01m으로 하면,

decimal m = -0.01m;

Console.WriteLine($"decimal value: {m}");
byte* pDecimal = (byte*)&m;
ParseDecimalFormat(pDecimal);

이런 출력 결과가 나옵니다.

decimal value: -0.01
sign bit: True
10-exponent: 2
Low mantissa: 1
Hig mantissa: 0
Mantissa: 1

보는 바와 같이 지수부의 숫자가 2인데요, float/double이 각각 127, 1023을 bias로 잡아 음의 지수, 양의 지수를 표현했던 것과는 달리 decimal은 무조건 음의 지수로 10의 -n 승을 의미합니다.

즉, 위의 경우에는 10의 -2승이 돼 원래의 숫자를 다음과 같은 공식으로 복원할 수 있습니다.

sign * mantissa / 10exponent

위의 공식에 분해한 숫자를 각각 대입하면 원래의 값이 나옵니다.

sign bit: True ==> -1
mantissa = 1
exponent = 2

-1 * 1 / 102 == -0.01

다시 말해, float/double이 2진수를 지수승으로 표기해 0.1 숫자를 제대로 표현할 수 없었던 한계를 decimal은 10의 n 승으로 지수를 계산하기 때문에 0.1에 대한 표현의 제약이 없어진 것입니다. (물론, 그만큼 연산 속도는 느립니다.)

자, 그럼 분해한 숫자를 기반으로 원래의 숫자를 복원하는 코드도 이렇게 간결하게 만들 수 있습니다. ^^

decimal m = -0.01m;

byte* pDecimal = (byte*)&m;
byte* hiPart = pDecimal;
byte* loPart = pDecimal + 8;

bool signBit = GetDecimalSignBit(hiPart);
ulong exponentBits = GetDecimalExponents(hiPart);
BigInteger mantissaBits = GetMantissa(hiPart, loPart);

{
    decimal orignalValue = (decimal)mantissaBits;
    decimal exponent = (decimal)Pow10(exponentBits);

    orignalValue = orignalValue / exponent;
    orignalValue = orignalValue * (signBit ? -1 : 1);

    Console.WriteLine(orignalValue); // 출력 결과: -0.01
}




한 가지 재미있는 점은, decimal의 경우 (float/double과는 다르게) 4바이트 int 배열로 그 구조를 반환하는 GetBits 메서드를 별도로 제공한다는 점입니다.

GetBits(Decimal)
; https://learn.microsoft.com/en-us/dotnet/api/system.decimal.getbits#System_Decimal_GetBits_System_Decimal_

이전에 설명했듯이 96비트가 int의 3개에 해당한다는 점, 그리고 부호/지수 비트의 영역이 남은 32비트에 있다는 점에서 GetBits는 가수부와 지수부/부호부를 어느 정도 분해해서 반환하는 효과를 갖습니다.

참고로, 검색하던 중에 아래와 같은 질문을 봤는데요,

How do check if a decimal has a fractional part in C#
; https://www.reddit.com/r/learnprogramming/comments/1g1f31/how_do_check_if_a_decimal_has_a_fractional_part/

즉, decimal의 값이 소수점을 포함하고 있는지를 확인하고 싶다는 건데, 이런 경우 GetBits를 이용하면 다음과 같이 구할 수 있고,

int[] bits = Decimal.GetBits(m);
bool hasFraction = (bits[3] & 0x7FFF_FFFF) != 0;

혹은 직접 포인터를 구해 저 영역의 값을 확인해도 됩니다.

decimal m = -0.01m;
byte* pDecimal = (byte*)&m;
ulong upper = *(ulong*)(pDecimal + 8);
bool checkFraction = (upper & 0x7FFF_FFFF) != 0;

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/10/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  [128]  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
1856정성태2/15/201521274.NET Framework: 493. TypeRef 메타테이블에 등록되는 타입의 조건파일 다운로드1
1855정성태2/10/201520805개발 환경 구성: 256. WebDAV Redirector - Sysinternals 폴더 연결 시 "The network path was not found" 오류 해결 방법
1854정성태2/10/201521803Windows: 104. 폴더는 삭제할 수 없지만, 그 하위 폴더/파일은 생성/삭제/변경하는 보안 설정
1853정성태2/6/201552066웹: 29. 여신금융협회 웹 사이트의 "Netscape 6.0은 지원하지 않습니다." 오류 메시지 [5]
1852정성태2/5/201522488.NET Framework: 492. .NET CLR Memory 성능 카운터의 의미파일 다운로드1
1851정성태2/5/201523406VC++: 88. 하룻밤의 꿈 - 인텔 하스웰의 TSX Instruction 지원 [2]
1850정성태2/4/201544297Windows: 103. 작업 관리자에서의 "Commit size"가 가리키는 메모리의 의미 [4]
1849정성태2/4/201524192기타: 51. DropBox의 CPU 100% 현상 [1]파일 다운로드1
1848정성태2/4/201519450.NET Framework: 491. 닷넷 Generic 타입의 메타 데이터 토큰 값 알아내는 방법 [2]
1847정성태2/3/201522803기타: 50. C# - 윈도우에서 dropbox 동기화 폴더 경로 및 종료하는 방법
1846정성태2/2/201532028Windows: 102. 제어판의 프로그램 추가/삭제 항목을 수동으로 실행하고 싶다면? [1]
1845정성태1/26/201532905Windows: 101. 제어판의 "Windows 자격 증명 관리(Manage your credentials)"를 금지시키는 방법
1844정성태1/26/201530862오류 유형: 269. USB 메모리의 용량이 비정상적으로 보여진다면? [7]
1843정성태1/24/201521924VC++: 87. 무시할 수 없는 Visual C++ 런타임 함수 성능
1842정성태1/23/201544454개발 환경 구성: 255. 노트북 키보드에 없는 BREAK 키를 다른 키로 대체하는 방법
1841정성태1/21/201519411오류 유형: 268. Win32 핸들 관련 CLR4 보안 오류 사례
1840정성태1/8/201527625오류 유형: 267. Visual Studio - CodeLens 사용 시 CPU 100% 현상
1839정성태1/5/201520535디버깅 기술: 69. windbg 분석 사례 - cpu 100% 현상 (2)
1838정성태1/4/201540240기타: 49. 윈도우 내레이터(Narrator) 기능 끄는 방법(윈도우에 파란색의 굵은 테두리 선이 나타난다면?) [4]
1837정성태1/4/201526361디버깅 기술: 68. windbg 분석 사례 - 메모리 부족 [1]
1836정성태1/4/201526372디버깅 기술: 67. windbg - 덤프 파일과 handle 정보
1835정성태1/3/201526858개발 환경 구성: 254. SQL 서버 역시 SSL 3.0/TLS 1.0만을 지원하는 듯!
1834정성태1/3/201551495개발 환경 구성: 253. TLS 1.2를 적용한 IIS 웹 사이트 구성
1833정성태1/3/201527579.NET Framework: 490. System.Data.SqlClient는 SSL 3.0/TLS 1.0만 지원하는 듯! [3]
1832정성태1/2/201520652오류 유형: 266. Azure에 응용 프로그램 게시 중 로그인 오류
1831정성태1/1/201528534디버깅 기술: 66. windbg 분석 사례 - cpu 100% 현상 (1) [1]
... 121  122  123  124  125  126  127  [128]  129  130  131  132  133  134  135  ...