Microsoft MVP성태의 닷넷 이야기
닷넷: 2259. C# - decimal 저장소의 비트 구조 [링크 복사], [링크+제목 복사],
조회: 9015
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 8개 있습니다.)
.NET Framework: 539. C# - 부동 소수 계산 왜 이렇게 나오죠? (1)
; https://www.sysnet.pe.kr/2/0/10872

.NET Framework: 540. C# - 부동 소수 계산 왜 이렇게 나오죠? (2)
; https://www.sysnet.pe.kr/2/0/10873

.NET Framework: 608. double 값을 구할 때는 반드시 피연산자를 double로 형변환!
; https://www.sysnet.pe.kr/2/0/11055

개발 환경 구성: 440. C#, C++ - double의 Infinity, NaN 표현 방식
; https://www.sysnet.pe.kr/2/0/11896

기타: 85. 단정도/배정도 부동 소수점의 정밀도(Precision)에 따른 형변환 손실
; https://www.sysnet.pe.kr/2/0/13212

닷넷: 2257. C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

닷넷: 2258. C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

닷넷: 2259. C# - decimal 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13619




C# - decimal 저장소의 비트 구조

decimal의 경우 float/double과 내부적인 처리는 유사하지만,

C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

그것들의 관계처럼 단순히 지수부와 가수부에 대한 비트 수만 확장한 것이 아니라, 지수부의 진법을 2가 아니라 10으로 취급한다는 점이 다릅니다. 마이크로소프트의 공식 문서는 (어딘가 있을 듯한데) 찾을 수 없었지만 아래의 글에 이에 대한 내용이 나옵니다.

Decimal floating point in .NET
; https://csharpindepth.com/articles/Decimal

결국, decimal은 16바이트이고 8바이트씩 나눠 다룰 수 있는데 이것을 bit mask로 표현하면 이렇게 구분할 수 있습니다.

[하위 8바이트(64비트)]
가수부 64비트: 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111

[상위 8바이트(64비트)]
상위 가수부 32비트: 1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000
지수부 5비트:       0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000
Sign 1비트:        0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000

따라서, 가수부는 총 96비트, 즉 2의 96승을 다룰 수 있고, 지수부는 5비트로 32까지 다룰 수 있지만 실제로 사용하는 범위는 0~28까지라고 합니다. 그래서 지수부의 경우 1_1111 비트 마스크 중 사실상 0_1111로 처리해도 무방합니다.

예를 하나 들어볼까요? ^^

18_446_744_073_709_551_616m 숫자에 대해 각각의 부호 비트, 지수부, 가수부를 다음과 같은 코드로 구할 수 있습니다.

decimal m = 18_446_744_073_709_551_615m + 1m;

Console.WriteLine($"decimal value: {m}");
byte* pDecimal = (byte*)&m;
ParseDecimalFormat(pDecimal);

private static unsafe void ParseDecimalFormat(byte* pDecimal)
{
    // 1bit - signbit
    // 5bits - exponent (only valid 0~28), 10의 n 승
    // 96bits - mantissa

    // 하위 - 64bits mantissa
    // 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;
    // 0111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;

    // 상위 - 64bits
    // 1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000; // 상위 32bits - 추가 mantissa
    // 0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000; // 5bits - exponent
    // 0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000; // 1bit - sign

    byte* hiPart = pDecimal;
    byte* loPart = pDecimal + 8;

    bool signBit = GetDecimalSignBit(hiPart);
    Console.WriteLine($"sign bit: {signBit}");

    ulong exponentBits = GetDecimalExponents(hiPart);
    Console.WriteLine($"10-exponent: {exponentBits}");

    BigInteger mantissaBits = GetMantissa(hiPart, loPart);
    Console.WriteLine($"Mantissa: {mantissaBits}");
}

private static unsafe bool GetDecimalSignBit(byte* hiPart)
{
    ulong hi = *(ulong*)hiPart;
    ulong signBit = hi & 0b_0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000;

    return signBit != 0;
}

private static unsafe ulong GetDecimalExponents(byte* hiPart)
{
    ulong hi = *(ulong*)hiPart;
    ulong exponentBits = hi & 0b_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000;
    return exponentBits >> 16;
}

private static unsafe BigInteger GetMantissa(byte* hiPart, byte* loPart)
{
    ulong lo = *(ulong*)loPart;
    BigInteger lower = new BigInteger(lo);

    ulong hi = *(ulong*)hiPart;
    ulong hiMantissa = hi & 0b_1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000;
    hiMantissa = (hiMantissa >> 32);

    BigInteger large = hiMantissa;
    large = large << 64;

    Console.WriteLine($"Low mantissa: {lo}");
    Console.WriteLine($"Hig mantissa: {large}");

    return large + lower;
}

실행 결과는 다음과 같습니다.

decimal value: 18446744073709551616
sign bit: False
10-exponent: 0
Low mantissa: 0
Hig mantissa: 18446744073709551616
Mantissa: 18446744073709551616

숫자에 소수점이 없어서 말 그대로 96비트의 숫자를 다루는 형태입니다. 반면 -0.01m으로 하면,

decimal m = -0.01m;

Console.WriteLine($"decimal value: {m}");
byte* pDecimal = (byte*)&m;
ParseDecimalFormat(pDecimal);

이런 출력 결과가 나옵니다.

decimal value: -0.01
sign bit: True
10-exponent: 2
Low mantissa: 1
Hig mantissa: 0
Mantissa: 1

보는 바와 같이 지수부의 숫자가 2인데요, float/double이 각각 127, 1023을 bias로 잡아 음의 지수, 양의 지수를 표현했던 것과는 달리 decimal은 무조건 음의 지수로 10의 -n 승을 의미합니다.

즉, 위의 경우에는 10의 -2승이 돼 원래의 숫자를 다음과 같은 공식으로 복원할 수 있습니다.

sign * mantissa / 10exponent

위의 공식에 분해한 숫자를 각각 대입하면 원래의 값이 나옵니다.

sign bit: True ==> -1
mantissa = 1
exponent = 2

-1 * 1 / 102 == -0.01

다시 말해, float/double이 2진수를 지수승으로 표기해 0.1 숫자를 제대로 표현할 수 없었던 한계를 decimal은 10의 n 승으로 지수를 계산하기 때문에 0.1에 대한 표현의 제약이 없어진 것입니다. (물론, 그만큼 연산 속도는 느립니다.)

자, 그럼 분해한 숫자를 기반으로 원래의 숫자를 복원하는 코드도 이렇게 간결하게 만들 수 있습니다. ^^

decimal m = -0.01m;

byte* pDecimal = (byte*)&m;
byte* hiPart = pDecimal;
byte* loPart = pDecimal + 8;

bool signBit = GetDecimalSignBit(hiPart);
ulong exponentBits = GetDecimalExponents(hiPart);
BigInteger mantissaBits = GetMantissa(hiPart, loPart);

{
    decimal orignalValue = (decimal)mantissaBits;
    decimal exponent = (decimal)Pow10(exponentBits);

    orignalValue = orignalValue / exponent;
    orignalValue = orignalValue * (signBit ? -1 : 1);

    Console.WriteLine(orignalValue); // 출력 결과: -0.01
}




한 가지 재미있는 점은, decimal의 경우 (float/double과는 다르게) 4바이트 int 배열로 그 구조를 반환하는 GetBits 메서드를 별도로 제공한다는 점입니다.

GetBits(Decimal)
; https://learn.microsoft.com/en-us/dotnet/api/system.decimal.getbits#System_Decimal_GetBits_System_Decimal_

이전에 설명했듯이 96비트가 int의 3개에 해당한다는 점, 그리고 부호/지수 비트의 영역이 남은 32비트에 있다는 점에서 GetBits는 가수부와 지수부/부호부를 어느 정도 분해해서 반환하는 효과를 갖습니다.

참고로, 검색하던 중에 아래와 같은 질문을 봤는데요,

How do check if a decimal has a fractional part in C#
; https://www.reddit.com/r/learnprogramming/comments/1g1f31/how_do_check_if_a_decimal_has_a_fractional_part/

즉, decimal의 값이 소수점을 포함하고 있는지를 확인하고 싶다는 건데, 이런 경우 GetBits를 이용하면 다음과 같이 구할 수 있고,

int[] bits = Decimal.GetBits(m);
bool hasFraction = (bits[3] & 0x7FFF_FFFF) != 0;

혹은 직접 포인터를 구해 저 영역의 값을 확인해도 됩니다.

decimal m = -0.01m;
byte* pDecimal = (byte*)&m;
ulong upper = *(ulong*)(pDecimal + 8);
bool checkFraction = (upper & 0x7FFF_FFFF) != 0;

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/10/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  [144]  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1455정성태6/1/201328338.NET Framework: 369. ThreadPool.QueueUserWorkItem의 실행 지연 [4]파일 다운로드1
1454정성태5/31/201326337Java: 15. Java 7 Control Panel 실행시키는 방법
1453정성태5/22/201325363기타: 32. Microsoft FTP 사이트에 접속하는 방법
1452정성태5/21/201333091Windows: 73. TabProcGrowth 값 삭제 후 IE를 실행시키면 다시 복원되는 경우 [3]
1451정성태5/17/201331988Windows: 72. 윈도우 서버 2012 기초 사용법
1450정성태5/16/201322774오류 유형: 176. SQL10007N Message "0" could not be retrieved. Reason code: "3"
1449정성태5/15/201329852오류 유형: 175. SpeechRecognitionEngine 사용 시 오류 유형 2가지
1448정성태5/14/201324844VC++: 68. #pragma warning(disable: ...)로 오류 제어가 안된다면?
1447정성태5/3/201326557개발 환경 구성: 191. Debugging Tools for Windows 독립 설치 버전 [1]
1446정성태4/30/201327352.NET Framework: 368. Encoding 타입의 대체(fallback) 메카니즘 [1]
1445정성태4/26/201325564디버깅 기술: 54. NT 서비스의 Main 메서드 안에서 Process.GetProcessesByName 호출 시 멈춤 현상 [1]
1444정성태4/26/201329575기타: 31. Internet Explorer: 자바스크립트로 숨겨진 파일 다운로드 경로를 알아내는 방법 [1]
1443정성태4/24/201325258개발 환경 구성: 190. Azure PaaS 웹 응용 프로그램 배포 후 SMTP 서버 구성 [2]
1442정성태4/21/201328842기타: 30. 마이크로소프트 워드의 CPU 점유 현상으로 글자 입력이 느려졌다면? [1]
1441정성태4/21/201335421.NET Framework: 367. LargeAddressAware 옵션이 적용된 닷넷 32비트 프로세스의 가용 메모리 [14]
1440정성태4/19/201324173오류 유형: 174. dumpbin.exe 실행시 mspdb110.dll 로드 오류
1439정성태4/18/201328047VS.NET IDE: 76. Visual Studio 2012와 Itanium 빌드 옵션 [2]
1438정성태4/17/201327462.NET Framework: 366. 다른 프로세스에 환경 변수 설정하는 방법 - 두 번째 이야기 [1]파일 다운로드1
1437정성태4/17/201327685VC++: 67. CRT(C Runtime DLL: msvcr...dll)에 대한 의존성 제거
1436정성태4/17/201333076.NET Framework: 365. Local SYSTEM 권한으로 코드를 실행하는 방법파일 다운로드1
1435정성태4/15/201341960Windows: 71. ad-hoc 보다 더 편리한 "가상 Wifi" 를 이용한 인터넷 공유 [2]
1434정성태4/9/201323238오류 유형: 173. TFS 서버의 이벤트 로그 오류 - WebHost failed to process a request. Parameter name: certificate
1433정성태4/9/201323540개발 환경 구성: 189. TFS에 설치된 SharePoint 의 PowerShell 콘솔 띄우는 방법
1432정성태4/5/201324557오류 유형: 172. System.Web.PipelineModuleStepContainer.GetEventCount 에서 NullReferenceException 이 발생한다면?
1431정성태4/5/201325165기타: 29. 부팅 가능한 (외장) HDD를 기존 부팅 메뉴에 추가하는 방법
1430정성태4/4/201327052제니퍼 .NET: 23. 모바일용 웹 사이트에서 발생하는 응답 시간 지연 현상 [5]파일 다운로드1
... 136  137  138  139  140  141  142  143  [144]  145  146  147  148  149  150  ...