Microsoft MVP성태의 닷넷 이야기
Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법 [링크 복사], [링크+제목 복사],
조회: 2217
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 

(시리즈 글이 14개 있습니다.)
Linux: 86. Golang + bpf2go를 사용한 eBPF 기본 예제
; https://www.sysnet.pe.kr/2/0/13769

Linux: 94. eBPF - vmlinux.h 헤더 포함하는 방법 (bpf2go에서 사용)
; https://www.sysnet.pe.kr/2/0/13783

Linux: 95. eBPF - kprobe를 이용한 트레이스
; https://www.sysnet.pe.kr/2/0/13784

Linux: 96. eBPF (bpf2go) - fentry, fexit를 이용한 트레이스
; https://www.sysnet.pe.kr/2/0/13788

Linux: 100.  eBPF의 2가지 방식 - libbcc와 libbpf(CO-RE)
; https://www.sysnet.pe.kr/2/0/13801

Linux: 103. eBPF (bpf2go) - Tracepoint를 이용한 트레이스 (BPF_PROG_TYPE_TRACEPOINT)
; https://www.sysnet.pe.kr/2/0/13810

Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
; https://www.sysnet.pe.kr/2/0/13815

Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
; https://www.sysnet.pe.kr/2/0/13817

Linux: 107. eBPF - libbpf CO-RE의 CONFIG_DEBUG_INFO_BTF 빌드 여부에 대한 의존성
; https://www.sysnet.pe.kr/2/0/13819

Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
; https://www.sysnet.pe.kr/2/0/13824

Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
; https://www.sysnet.pe.kr/2/0/13825

Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법
; https://www.sysnet.pe.kr/2/0/13893

Linux: 116. eBPF / bpf2go - BTF Style Maps 정의 구문과 데이터 정렬 문제
; https://www.sysnet.pe.kr/2/0/13894

Linux: 117. eBPF / bpf2go - Map에 추가된 요소의 개수를 확인하는 방법
; https://www.sysnet.pe.kr/2/0/13895




eBPF (bpf2go) - ARRAY / HASH map 기본 사용법

지난 글에서 streaming 형식의 2가지 MAP을 알아봤습니다.

Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
; https://www.sysnet.pe.kr/2/0/13824

Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
; https://www.sysnet.pe.kr/2/0/13825

이번에는 일반적인 MAP 사용법에 대해 알아볼 텐데요, 이미 max_entries == 1인 경우로 제한해 전역 변수처럼 사용하는 BPF_MAP_TYPE_HASH 유형의 MAP을 다뤄보긴 했습니다.

eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
; https://www.sysnet.pe.kr/2/0/13817

따라서, max_entries 값만 늘린다면 얼마든지 전역 컬렉션 저장소로 사용할 수 있는데요,

struct {
    __uint(type, BPF_MAP_TYPE_HASH);
    __type(key, __u32);
    __type(value, __u32);
    __uint(max_entries, 10000);
    /* __uint(map_flags, BPF_F_NO_PREALLOC); */ // 지정해야 할 flags가 있는 경우
} my_hash_map SEC(".maps");

// key, value의 크기는 2개 합쳐서 KMALLOC_MAX_SIZE보다 크면 안 됨
// https://stackoverflow.com/questions/12568379/kmalloc-size-allocation
// #define KMALLOC_SHIFT_MAX       30
// #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
//                                 1073741824 (1024 * 1024 * 1024 == 1GB)

// $ cat /usr/src/kernel/linux-6.11.5/include/linux/slab.h 
// #define KMALLOC_SHIFT_MAX       (MAX_PAGE_ORDER + PAGE_SHIFT)
// #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)

// https://github.com/torvalds/linux/blob/master/tools/include/linux/mm.h
// #define PAGE_SHIFT		12

// https://github.com/torvalds/linux/blob/master/include/linux/mmzone.h
// #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
// #define MAX_PAGE_ORDER 10  // 1 << (10 + 12) == 4MB
// #else
// #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
// #endif

[Syscall commands]
BPF_MAP_LOOKUP_ELEM
BPF_MAP_LOOKUP_AND_DELETE_ELEM
BPF_MAP_UPDATE_ELEM
BPF_MAP_GET_NEXT_KEY
BPF_MAP_LOOKUP_BATCH
BPF_MAP_LOOKUP_AND_DELETE_BATCH

[Helper functions]
bpf_for_each_map_elem
bpf_map_delete_elem
bpf_map_lookup_elem
bpf_map_update_elem

지원하는 helper 함수를 이용해 eBPF 측에서 자유롭게 MAP에 추가/삭제/조회할 수 있습니다.

SEC("tracepoint/syscalls/sys_enter_execve")
int sys_enter_execve(struct trace_event_raw_sys_enter* ctx)
{
    __u32 key = 500;
    __u32 value = 1000;

    bpf_map_update_elem(&my_hash_map, &key, &value, BPF_ANY);

    return 0;
}

물론 go 언어 측에서도 해당 맵의 데이터를 조회할 수 있는데요, 가령 아래와 같이 작성하면 map에 추가된 모든 요소를 출력하게 됩니다.

func IterMyHashMap(bpfObj ebpf_basicObjects) {
    iter := bpfObj.MyHashMap.Iterate()

    var (
        key   uint32
        value uint32
    )

    idx := 0
    for iter.Next(&key, &value) {
        log.Printf("[%v], key: %v, value: %v\n", idx, key, value)
        idx++
    }
}

어렵지 않죠? ^^




HASH 유형의 맵 외에 ARRAY 유형의 맵도 있습니다.

struct {
    __uint(type, BPF_MAP_TYPE_ARRAY);
    __type(key, __u32); // ARRAY MAP의 경우 key 크기는 반드시 4바이트여야 함
    __type(value, __u32);
    __uint(max_entries, 10000);
} my_array_map SEC(".maps");

[Syscall commands]
BPF_MAP_LOOKUP_ELEM
BPF_MAP_UPDATE_ELEM
BPF_MAP_GET_NEXT_KEY
BPF_MAP_LOOKUP_BATCH

[Helper functions]
bpf_for_each_map_elem
bpf_map_delete_elem
bpf_map_lookup_elem
bpf_map_update_elem

ARRAY의 특성상 인덱스를 통해 접근하기 때문에 key 크기는 반드시 4바이트여야 합니다. 만약 4바이트가 넘게 되면,

struct {
    __uint(type, BPF_MAP_TYPE_ARRAY);
    __type(key, __u64);
    __type(value, __u32);
    __uint(max_entries, 10000);
} my_array_map SEC(".maps");

컴파일 타임에는 오류가 없지만 런타임에 eBPF 코드를 적재 시 "map my_array_map: map create: invalid argument"와 같은 오류가 발생합니다. 반면, HASH MAP의 경우에는 지정한 key 값을 hashing하므로 key 크기의 (현실적인) 제약은 없습니다.

어렵게 생각하지 마시고, 대체로 전통적인 자료구조에서의 HASH/ARRAY에 기반한 차이점을 그대로 반영해 이해하시면 됩니다. ^^

이런 식으로, 기본은 BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_ARRAY이고, 이에 대해 각각 PER CPU로 관리하는 BPF_MAP_TYPE_PERCPU_HASH, BPF_MAP_TYPE_PERCPU_ARRAY 유형도 있습니다.

BPF_MAP_TYPE_ARRAY and BPF_MAP_TYPE_PERCPU_ARRAY
; https://docs.kernel.org/bpf/map_array.html#bpf-map-type-array-and-bpf-map-type-percpu-array

또한 맵의 용량이 부족할 때 최근에 가장 적게 사용된 요소를 삭제하는 BPF_MAP_TYPE_LRU_HASH 유형과 그것의 PER CPU 버전인 BPF_MAP_TYPE_LRU_PERCPU_HASH 유형도 있고, key가 아예 없는 BPF_MAP_TYPE_QUEUE, BPF_MAP_TYPE_STACK 유형이 있다는 정도만 알아두면 되겠습니다.




여기서 잠깐 LRU map에 대한 설명을 해볼까요? ^^

eBPF map의 경우 max_entries 값이 동적으로 늘어날 수 없고, 항상 상수로 최댓값을 지정해야 합니다. 이런 제약 때문에 크기를 처음부터 크게 잡게 되면 메모리 낭비가 발생할 수 있고, 적게 잡으면 정확도가 떨어질 수 있습니다.

따라서 LRU hash를 적용하면 그나마 최근 데이터에 한해서는 정확성을 유지하면서 메모리 사용량을 줄일 수 있어 적절한 선택이 될 수 있는 상황이 있을 텐데요, 그런데 LRU가 생각보다 정확도를 상당히 떨어뜨릴 수 있다는 점에 유의해야 합니다.

테스트를 위해 다음과 같이 2개의 map을 정의하고,

#define MAX_ELEM_ENTRIES (1003)

struct {
    __uint(type, BPF_MAP_TYPE_HASH);
    __type(key, __u32);
    __type(value, __u32);
    __uint(max_entries, MAX_ELEM_ENTRIES);
} my_u32_elem_map SEC(".maps");

struct {
    __uint(type, BPF_MAP_TYPE_LRU_HASH);
    __type(key, __u32);
    __type(value, __u32);
    __uint(max_entries, MAX_ELEM_ENTRIES);
} my_u32_lru_elem_map SEC(".maps");

eBPF에서 해당 map에 각각 MAX_ELEM_ENTRIES + 1개의 요소를 밀어 넣으면,

// ... eBPF 함수 ...
{
    for (int i = 1; i <= MAX_ELEM_ENTRIES + 1; i ++)
    {
        __u32 key = i;
        __u32 value = i * 10 + i;
        bpf_map_update_elem(&my_u32_elem_map, &key, &value, BPF_ANY);
        bpf_map_update_elem(&my_u32_lru_elem_map, &key, &value, BPF_ANY);
    }
}

BPF_MAP_TYPE_HASH map의 경우에는 1003번째 요소를 추가한 이후 max에 도달했기 때문에 이후 1004번째 요소부터는 추가되지 않습니다. 즉, my_u32_elem_map에는 key == 1004인 요소가 없는 것입니다.

반면 BPF_MAP_TYPE_LRU_HASH map은 key == 1004인 요소가 추가되고 기존에 있는 요소 중에서 알고리즘에 의해 LRU로 판단된 요소가 삭제됩니다. 그런데 또 다른 차이점이 있다면, lru map의 경우 추가된 요소들이 max 만큼 채워지는 경우가 거의 없다는 점입니다. 즉, 위와 같이 꽉 차게 추가를 해도 어떤 경우에는 343개, 어떤 경우에는 400개와 같은 식으로 (max가 1003개로 지정된) map에 데이터가 부분적으로만 보관돼 있습니다. 단적으로, max_entries == 10 정도로 낮게 설정하면 항목이 언제나/거의 1개만 있는 정도로 유지됩니다. 대충 어떤 느낌인지 아시겠죠? ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 2/27/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 31  32  33  34  35  36  37  [38]  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
12986정성태2/28/202216351.NET Framework: 1168. C# -IIncrementalGenerator를 적용한 Version 2 Source Generator 실습 [1]
12985정성태2/28/202215736.NET Framework: 1167. C# -Version 1 Source Generator 실습
12984정성태2/24/202214871.NET Framework: 1166. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 filtering_video.c 예제 포팅
12983정성태2/24/202214955.NET Framework: 1165. .NET Core/5+ 빌드 시 runtimeconfig.json에 설정을 반영하는 방법
12982정성태2/24/202214931.NET Framework: 1164. HTTP Error 500.31 - ANCM Failed to Find Native Dependencies
12981정성태2/23/202213749VC++: 154. C/C++ 언어의 문자열 Literal에 인덱스 적용하는 구문 [1]
12980정성태2/23/202215186.NET Framework: 1163. C# - 윈도우 환경에서 usleep을 호출하는 방법 [2]
12979정성태2/22/202220677.NET Framework: 1162. C# - 인텔 CPU의 P-Core와 E-Core를 구분하는 방법 [1]파일 다운로드2
12978정성태2/21/202215813.NET Framework: 1161. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 resampling_audio.c 예제 포팅
12977정성태2/21/202220539.NET Framework: 1160. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 qsv 디코딩
12976정성태2/21/202214363VS.NET IDE: 174. Visual C++ - "External Dependencies" 노드 비활성화하는 방법
12975정성태2/20/202216391.NET Framework: 1159. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 qsvdec.c 예제 포팅파일 다운로드1
12974정성태2/20/202214354.NET Framework: 1158. C# - SqlConnection의 최소 Pooling 수를 초과한 DB 연결은 언제 해제될까요?
12973정성태2/16/202217532개발 환경 구성: 639. ffmpeg.exe - Intel Quick Sync Video(qsv)를 이용한 인코딩 [3]
12972정성태2/16/202215955Windows: 200. Intel CPU의 내장 그래픽 GPU가 작업 관리자에 없다면? [4]
12971정성태2/15/202218950.NET Framework: 1157. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 muxing.c 예제 포팅 [7]파일 다운로드2
12970정성태2/15/202215554.NET Framework: 1156. C# - ffmpeg(FFmpeg.AutoGen): Bitmap으로부터 h264 형식의 파일로 쓰기 [1]파일 다운로드1
12969정성태2/14/202213742개발 환경 구성: 638. Visual Studio의 Connection Manager 기능(Remote SSH 관리)을 위한 명령행 도구 - 두 번째 이야기파일 다운로드1
12968정성태2/14/202214330오류 유형: 794. msbuild 에러 - error NETSDK1005: Assets file '...\project.assets.json' doesn't have a target for '...'.
12967정성태2/14/202214596VC++: 153. Visual C++ - C99 표준의 Compund Literals 빌드 방법 [4]
12966정성태2/13/202214394.NET Framework: 1155. C# - ffmpeg(FFmpeg.AutoGen): Bitmap으로부터 yuv420p + rawvideo 형식의 파일로 쓰기파일 다운로드1
12965정성태2/13/202214445.NET Framework: 1154. "Hanja Hangul Project v1.01 (파이썬)"의 C# 버전
12964정성태2/11/202215054.NET Framework: 1153. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 avio_reading.c 예제 포팅파일 다운로드1
12963정성태2/11/202215576.NET Framework: 1152. C# - 화면 캡처한 이미지를 ffmpeg(FFmpeg.AutoGen)로 동영상 처리 (저해상도 현상 해결)파일 다운로드1
12962정성태2/9/202214948오류 유형: 793. 마이크로소프트 스토어 - 제품이 존재하지 않습니다. 재고가 없는 것일 수 있습니다.
12961정성태2/8/202215057.NET Framework: 1151. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 비디오 프레임의 크기 및 포맷 변경 예제(scaling_video.c) [7]파일 다운로드1
... 31  32  33  34  35  36  37  [38]  39  40  41  42  43  44  45  ...