Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 

Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식

예전에 한번 정리했었는데,

파이썬 - tensorflow 2.6 NVidia GPU 사용 방법
; https://www.sysnet.pe.kr/2/0/12816

근래에 새로 구성했더니 ^^; GPU가 인식이 안 됩니다. 검색 결과 이런 문구가 나오는군요, ^^

// https://www.tensorflow.org/install/source_windows?hl=ko#install_gpu_support_optional

참고: 기본 Windows에서의 GPU 지원은 2.10 이하 버전에서만 사용할 수 있습니다. TF 2.11부터 CUDA 빌드는 Windows에서 지원되지 않습니다. Windows에서 TensorFlow GPU를 사용하려면 WSL2에서 TensorFlow를 빌드/설치하거나 TensorFlow-DirectML-Plugin과 함께 tensorflow-cpu를 사용해야 합니다.


지금(2025-05-23) pip install로 설치하면 tensorflow==2.19 버전이기 때문에 Windows 환경에서는 GPU를 지원하지 않습니다. 따라서 Windows + Python이라면 테스트 용도로 CPU 버전만 사용해야 합니다.

그래도 그나마 다행인 것은, WSL2 환경에서는 GPU 지원이 가능하다는 점인데요, 이번엔 그 방법을 정리해 보겠습니다.




공식 문서로 시작하는 것이 가장 확실하겠죠? ^^

2. Getting Started with CUDA on WSL 2
; https://docs.nvidia.com/cuda/wsl-user-guide/index.html#getting-started-with-cuda-on-wsl

혹시 예전 GPG 키가 있다면 우선 삭제하고,

$ sudo apt-key del 7fa2af80
OK

그다음 "download page for WSL-Ubuntu" 링크에서, "Linux" / "x86_64" / "WSL-Ubuntu" "2.0" / "deb (local)"를 선택하면 아래의 내용이 펼쳐져서 나옵니다.

$ wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
$ sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ wget https://developer.download.nvidia.com/compute/cuda/12.9.0/local_installers/cuda-repo-wsl-ubuntu-12-9-local_12.9.0-1_amd64.deb
$ sudo dpkg -i cuda-repo-wsl-ubuntu-12-9-local_12.9.0-1_amd64.deb
$ sudo cp /var/cuda-repo-wsl-ubuntu-12-9-local/cuda-*-keyring.gpg /usr/share/keyrings/
$ sudo apt-get update
$ sudo apt-get -y install cuda-toolkit-12-9

그냥 ^^ 아무 생각 없이 저대로 차례차례 명령어를 실행하시면 됩니다. (혹시 향후에는 바뀔 수도 있으므로 반드시 저 링크에서 제공하는 스크립트를 사용하시기 바랍니다.)

설치가 완료되면 대충 이런 식으로 확인할 수 있습니다.

$ /usr/local/cuda-12.9/bin/nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Apr__9_19:24:57_PDT_2025
Cuda compilation tools, release 12.9, V12.9.41
Build cuda_12.9.r12.9/compiler.35813241_0

$ which nvidia-smi
/usr/lib/wsl/lib/nvidia-smi

$ nvidia-smi
Wed May 21 14:02:16 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.51.02              Driver Version: 576.02         CUDA Version: 12.9     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4060 Ti     On  |   00000000:01:00.0  On |                  N/A |
|  0%   29C    P8             10W /  160W |    4985MiB /   8188MiB |      9%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

이제 pip install로 cudnn을 설치하고,

'''
   conda create --name pybuild python=3.10 -y
   conda activate pybuild
'''

$ python -m pip install nvidia-cudnn-cu12

예제 코드를,

'''
   python -m pip install tensorflow
'''

$ cat test.py
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())


실행하면 이런 결과가 나옵니다.

'''
   python -m pip install matplotlib
'''

$ python test.py
2025-04-05 14:25:36.487499: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747805136.595973   99583 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747805136.629660   99583 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747805136.877554   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877642   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877650   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877653   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-05 14:25:36.899923: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Num GPUs Available:  1
I0000 00:00:1747805140.710462   99583 gpu_device.cc:2019] Created device /device:GPU:0 with 5529 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 4060 Ti, pci bus id: 0000:01:00.0, compute capability: 8.9
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 1437687304491415990
xla_global_id: -1
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 5797576704
locality {
  bus_id: 1
  links {
  }
}
incarnation: 10535418989602502258
physical_device_desc: "device: 0, name: NVIDIA GeForce RTX 4060 Ti, pci bus id: 0000:01:00.0, compute capability: 8.9"
xla_global_id: 416903419
]

초기에 오류 메시지가 나오긴 하는데, 일단 GPU 장치가 인식은 됩니다. 이후 예전에 작성했던 머신 러닝 예제 코드를 돌리면 작업 관리자의 GPU 사용량이 이렇게 올라가는 것을 확인할 수 있습니다.

tensorflow_gpu_on_wsl2_1.png




참고로, cuda toolkit이나 cudnn 없이 예제 코드(list_physical_devices)를 실행하면 이런 결과가 나오는데요,

$ python test.py
2025-04-05 14:14:24.671434: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747804464.812065   97533 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747804464.849271   97533 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747804465.141418   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141520   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141526   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141529   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-05 14:14:25.174985: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
W0000 00:00:1747804469.517589   97533 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
Num GPUs Available:  0
W0000 00:00:1747804469.522848   97533 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 6212249524767843787
xla_global_id: -1
]

보는 바와 같이 "/device:CPU:0"만 나옵니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/24/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1114정성태9/4/201135313Math: 2. "Zhang Suen 알고리즘(세선화, Thinning/Skeletonization)"의 C# 버전 [4]파일 다운로드1
1113정성태9/2/201134902개발 환경 구성: 129. Hyper-V에 CentOS 설치하기
1112정성태9/2/201151599Linux: 1. 리눅스 <-> 윈도우 원격 접속 프로그램 사용 [3]
1111정성태8/29/201126068제니퍼 .NET: 16. 적용 사례 (1) - DB Connection Pooling을 사용하지 않았을 때의 성능 저하를 알려주다. [1]
1110정성태8/26/201127548오류 유형: 136. RDP 접속이 불연속적으로 끊기는 문제
1109정성태8/26/201130234오류 유형: 135. 어느 순간 Active Directory 접속이 안되는 문제
1108정성태8/22/201131575오류 유형: 134. OLE/COM Object Viewer - DllRegisterServer in IVIEWERS.DLL failed. [1]
1107정성태8/21/201129565디버깅 기술: 43. Windows Form의 Load 이벤트에서 발생하는 예외가 Visual Studio에서 잡히지 않는 문제
1106정성태8/20/201127831웹: 26. FailedRequestTracing 설정으로 인한 iisexpress.exe 비정상 종료 문제
1105정성태8/19/201127704.NET Framework: 238. Web Site Model 프로젝트에서 Trace.WriteLine 출력이 dbgview.exe에서 확인이 안 되는 문제파일 다운로드1
1104정성태8/19/201128029웹: 25. WebDev보다 IIS Express가 더 나은 점 - 다중 가상 디렉터리 매핑 [1]
1103정성태8/19/201134006오류 유형: 133. WCF 포트 바인딩 실패 오류 - TCP error(10013) [1]
1102정성태8/19/201131426Math: 1. 방탈출3 - Room 10의 '중복가능한 조합' 문제를 위한 C# 프로그래밍 [2]파일 다운로드1
1101정성태8/19/201130434.NET Framework: 237. WCF AJAX 서비스와 JavaScript 간의 DateTime 연동 [1]파일 다운로드1
1100정성태8/17/201129542.NET Framework: 236. SqlDbType - DateTime, DateTime2, DateTimeOffset의 차이점파일 다운로드1
1099정성태8/15/201128862오류 유형: 132. 어느 순간 갑자기 접속이 안 되는 TFS 서버
1098정성태8/15/201150870웹: 24. 네이버는 어떻게 로그인 처리를 할까요? [2]
1097정성태8/15/201122133.NET Framework: 235. 메서드의 메타 데이터 토큰 값으로 클래스를 찾아내는 방법
1096정성태8/15/201126359디버깅 기술: 42. Watson Bucket 정보를 이용한 CLR 응용 프로그램 예외 분석 - (2)
1095정성태8/14/201126816디버깅 기술: 41. Windbg - 비정상 종료된 닷넷 프로그램의 StackTrace에서 보이는 offset 값 의미
1094정성태8/14/201131134오류 유형: 131. Fiddler가 강제 종료된 경우, 웹 사이트 방문이 안되는 현상
1093정성태7/27/201124796오류 유형: 130. Unable to connect to the Microsoft Visual Studio Remote Debugging Monitor ... Access is denied.
1092정성태7/22/201127109Team Foundation Server: 46. 코드 이외의 파일에 대해 소스 제어에서 제외시키는 방법
1091정성태7/21/201126120개발 환경 구성: 128. WP7 Emulator 실행 시 audiodg.exe의 CPU 소모율 증가 [2]
1089정성태7/18/201131769.NET Framework: 234. 왜? Button 컨트롤에는 MouseDown/MouseUp 이벤트가 발생하지 않을까요?파일 다운로드1
1088정성태7/16/201124832.NET Framework: 233. Entity Framework 4.1 - 윈도우 폰 7에서의 CodeFirst 순환 참조 문제파일 다운로드1
... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...