Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 
(연관된 글이 2개 있습니다.)
(시리즈 글이 2개 있습니다.)
스크립트: 24. 파이썬 - tensorflow 2.6 NVidia GPU 사용 방법
; https://www.sysnet.pe.kr/2/0/12816

개발 환경 구성: 746. Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식
; https://www.sysnet.pe.kr/2/0/13937




Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식

예전에 한번 정리했었는데,

파이썬 - tensorflow 2.6 NVidia GPU 사용 방법
; https://www.sysnet.pe.kr/2/0/12816

근래에 새로 구성했더니 ^^; GPU가 인식이 안 됩니다. 검색 결과 이런 문구가 나오는군요, ^^

// https://www.tensorflow.org/install/source_windows?hl=ko#install_gpu_support_optional

참고: 기본 Windows에서의 GPU 지원은 2.10 이하 버전에서만 사용할 수 있습니다. TF 2.11부터 CUDA 빌드는 Windows에서 지원되지 않습니다. Windows에서 TensorFlow GPU를 사용하려면 WSL2에서 TensorFlow를 빌드/설치하거나 TensorFlow-DirectML-Plugin과 함께 tensorflow-cpu를 사용해야 합니다.


지금(2025-05-23) pip install로 설치하면 tensorflow==2.19 버전이기 때문에 Windows 환경에서는 GPU를 지원하지 않습니다. 따라서 Windows + Python이라면 테스트 용도로 CPU 버전만 사용해야 합니다.

그래도 그나마 다행인 것은, WSL2 환경에서는 GPU 지원이 가능하다는 점인데요, 이번엔 그 방법을 정리해 보겠습니다.




공식 문서로 시작하는 것이 가장 확실하겠죠? ^^

2. Getting Started with CUDA on WSL 2
; https://docs.nvidia.com/cuda/wsl-user-guide/index.html#getting-started-with-cuda-on-wsl

혹시 예전 GPG 키가 있다면 우선 삭제하고,

$ sudo apt-key del 7fa2af80
OK

그다음 "download page for WSL-Ubuntu" 링크에서, "Linux" / "x86_64" / "WSL-Ubuntu" "2.0" / "deb (local)"를 선택하면 아래의 내용이 펼쳐져서 나옵니다.

$ wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
$ sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ wget https://developer.download.nvidia.com/compute/cuda/12.9.0/local_installers/cuda-repo-wsl-ubuntu-12-9-local_12.9.0-1_amd64.deb
$ sudo dpkg -i cuda-repo-wsl-ubuntu-12-9-local_12.9.0-1_amd64.deb
$ sudo cp /var/cuda-repo-wsl-ubuntu-12-9-local/cuda-*-keyring.gpg /usr/share/keyrings/
$ sudo apt-get update
$ sudo apt-get -y install cuda-toolkit-12-9

그냥 ^^ 아무 생각 없이 저대로 차례차례 명령어를 실행하시면 됩니다. (혹시 향후에는 바뀔 수도 있으므로 반드시 저 링크에서 제공하는 스크립트를 사용하시기 바랍니다.)

설치가 완료되면 대충 이런 식으로 확인할 수 있습니다.

$ /usr/local/cuda-12.9/bin/nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Apr__9_19:24:57_PDT_2025
Cuda compilation tools, release 12.9, V12.9.41
Build cuda_12.9.r12.9/compiler.35813241_0

$ which nvidia-smi
/usr/lib/wsl/lib/nvidia-smi

$ nvidia-smi
Wed May 21 14:02:16 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.51.02              Driver Version: 576.02         CUDA Version: 12.9     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4060 Ti     On  |   00000000:01:00.0  On |                  N/A |
|  0%   29C    P8             10W /  160W |    4985MiB /   8188MiB |      9%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

이제 pip install로 cudnn을 설치하고,

'''
   conda create --name pybuild python=3.10 -y
   conda activate pybuild
'''

$ python -m pip install nvidia-cudnn-cu12

예제 코드를,

'''
   python -m pip install tensorflow
'''

$ cat test.py
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())


실행하면 이런 결과가 나옵니다.

'''
   python -m pip install matplotlib
'''

$ python test.py
2025-04-05 14:25:36.487499: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747805136.595973   99583 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747805136.629660   99583 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747805136.877554   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877642   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877650   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877653   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-05 14:25:36.899923: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Num GPUs Available:  1
I0000 00:00:1747805140.710462   99583 gpu_device.cc:2019] Created device /device:GPU:0 with 5529 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 4060 Ti, pci bus id: 0000:01:00.0, compute capability: 8.9
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 1437687304491415990
xla_global_id: -1
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 5797576704
locality {
  bus_id: 1
  links {
  }
}
incarnation: 10535418989602502258
physical_device_desc: "device: 0, name: NVIDIA GeForce RTX 4060 Ti, pci bus id: 0000:01:00.0, compute capability: 8.9"
xla_global_id: 416903419
]

초기에 오류 메시지가 나오긴 하는데, 일단 GPU 장치가 인식은 됩니다. 이후 예전에 작성했던 머신 러닝 예제 코드를 돌리면 작업 관리자의 GPU 사용량이 이렇게 올라가는 것을 확인할 수 있습니다.

tensorflow_gpu_on_wsl2_1.png




참고로, cuda toolkit이나 cudnn 없이 예제 코드(list_physical_devices)를 실행하면 이런 결과가 나오는데요,

$ python test.py
2025-04-05 14:14:24.671434: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747804464.812065   97533 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747804464.849271   97533 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747804465.141418   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141520   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141526   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141529   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-05 14:14:25.174985: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
W0000 00:00:1747804469.517589   97533 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
Num GPUs Available:  0
W0000 00:00:1747804469.522848   97533 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 6212249524767843787
xla_global_id: -1
]

보는 바와 같이 "/device:CPU:0"만 나옵니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 6/19/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  [51]  52  53  54  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12702정성태7/11/202118993오류 유형: 733. TaskScheduler에 등록된 wacs.exe의 Let's Encrypt 인증서 업데이트 문제
12701정성태7/9/202118709.NET Framework: 1075. C# - ThreadPool의 스레드는 반환 시 ThreadStatic과 AsyncLocal 값이 초기화 될까요?파일 다운로드1
12700정성태7/8/202119304.NET Framework: 1074. RuntimeType의 메모리 누수? [1]
12699정성태7/8/202117870VS.NET IDE: 167. Visual Studio 디버깅 중 GC Heap 상태를 보여주는 "Show Diagnostic Tools" 메뉴 사용법
12698정성태7/7/202121750오류 유형: 732. Windows 11 업데이트 시 3% 또는 0%에서 다운로드가 멈춘 경우
12697정성태7/7/202116287개발 환경 구성: 574. Windows 11 (Insider Preview) 설치하는 방법
12696정성태7/6/202117920VC++: 146. 운영체제의 스레드 문맥 교환(Context Switch)을 유사하게 구현하는 방법파일 다운로드2
12695정성태7/3/202117970VC++: 145. C 언어의 setjmp/longjmp 기능을 Thread Context를 이용해 유사하게 구현하는 방법파일 다운로드1
12694정성태7/2/202119435Java: 24. Azure - Spring Boot 앱을 Java SE(Embedded Web Server)로 호스팅 시 로그 파일 남기는 방법 [1]
12693정성태6/30/202116413오류 유형: 731. Azure Web App Site Extension - Failed to install web app extension [...]. {1}
12692정성태6/30/202117164디버깅 기술: 180. Azure - Web App의 비정상 종료 시 남겨지는 로그 확인
12691정성태6/30/202117034개발 환경 구성: 573. 테스트 용도이지만 테스트에 적합하지 않은 Azure D1 공유(shared) 요금제
12690정성태6/28/202117884Java: 23. Azure - 자바(Java)로 만드는 Web App Service - Tomcat 호스팅
12689정성태6/25/202120433오류 유형: 730. Windows Forms 디자이너 - The class Form1 can be designed, but is not the first class in the file. [1]
12688정성태6/24/202119712.NET Framework: 1073. C# - JSON 역/직렬화 시 리플렉션 손실을 없애는 JsonSrcGen [2]파일 다운로드1
12687정성태6/22/202116752오류 유형: 729. Invalid data: Invalid artifact, java se app service only supports .jar artifact
12686정성태6/21/202117969Java: 22. Azure - 자바(Java)로 만드는 Web App Service - Java SE (Embedded Web Server) 호스팅
12685정성태6/21/202120069Java: 21. Azure Web App Service에 배포된 Java 프로세스의 메모리 및 힙(Heap) 덤프 뜨는 방법
12684정성태6/19/202118410오류 유형: 728. Visual Studio 2022부터 DTE.get_Properties 속성 접근 시 System.MissingMethodException 예외 발생
12683정성태6/18/202119032VS.NET IDE: 166. Visual Studio 2022 - Windows Forms 프로젝트의 x86 DLL 컨트롤이 Designer에서 오류가 발생하는 문제 [1]파일 다운로드1
12682정성태6/18/202115516VS.NET IDE: 165. Visual Studio 2022를 위한 Extension 마이그레이션
12681정성태6/18/202116500오류 유형: 727. .NET 2.0 ~ 3.5 + x64 환경에서 System.EnterpriseServices 참조 시 CS8012 경고
12680정성태6/18/202118537오류 유형: 726. python2.7.exe 실행 시 0xc000007b 오류
12679정성태6/18/202118077COM 개체 관련: 23. CoInitializeSecurity의 전역 설정을 재정의하는 CoSetProxyBlanket 함수 사용법파일 다운로드1
12678정성태6/17/202116255.NET Framework: 1072. C# - CoCreateInstance 관련 Inteop 오류 정리파일 다운로드1
12677정성태6/17/202120197VC++: 144. 역공학을 통한 lxssmanager.dll의 ILxssSession 사용법 분석파일 다운로드1
... 46  47  48  49  50  [51]  52  53  54  55  56  57  58  59  60  ...