Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 

Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식

예전에 한번 정리했었는데,

파이썬 - tensorflow 2.6 NVidia GPU 사용 방법
; https://www.sysnet.pe.kr/2/0/12816

근래에 새로 구성했더니 ^^; GPU가 인식이 안 됩니다. 검색 결과 이런 문구가 나오는군요, ^^

// https://www.tensorflow.org/install/source_windows?hl=ko#install_gpu_support_optional

참고: 기본 Windows에서의 GPU 지원은 2.10 이하 버전에서만 사용할 수 있습니다. TF 2.11부터 CUDA 빌드는 Windows에서 지원되지 않습니다. Windows에서 TensorFlow GPU를 사용하려면 WSL2에서 TensorFlow를 빌드/설치하거나 TensorFlow-DirectML-Plugin과 함께 tensorflow-cpu를 사용해야 합니다.


지금(2025-05-23) pip install로 설치하면 tensorflow==2.19 버전이기 때문에 Windows 환경에서는 GPU를 지원하지 않습니다. 따라서 Windows + Python이라면 테스트 용도로 CPU 버전만 사용해야 합니다.

그래도 그나마 다행인 것은, WSL2 환경에서는 GPU 지원이 가능하다는 점인데요, 이번엔 그 방법을 정리해 보겠습니다.




공식 문서로 시작하는 것이 가장 확실하겠죠? ^^

2. Getting Started with CUDA on WSL 2
; https://docs.nvidia.com/cuda/wsl-user-guide/index.html#getting-started-with-cuda-on-wsl

혹시 예전 GPG 키가 있다면 우선 삭제하고,

$ sudo apt-key del 7fa2af80
OK

그다음 "download page for WSL-Ubuntu" 링크에서, "Linux" / "x86_64" / "WSL-Ubuntu" "2.0" / "deb (local)"를 선택하면 아래의 내용이 펼쳐져서 나옵니다.

$ wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
$ sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ wget https://developer.download.nvidia.com/compute/cuda/12.9.0/local_installers/cuda-repo-wsl-ubuntu-12-9-local_12.9.0-1_amd64.deb
$ sudo dpkg -i cuda-repo-wsl-ubuntu-12-9-local_12.9.0-1_amd64.deb
$ sudo cp /var/cuda-repo-wsl-ubuntu-12-9-local/cuda-*-keyring.gpg /usr/share/keyrings/
$ sudo apt-get update
$ sudo apt-get -y install cuda-toolkit-12-9

그냥 ^^ 아무 생각 없이 저대로 차례차례 명령어를 실행하시면 됩니다. (혹시 향후에는 바뀔 수도 있으므로 반드시 저 링크에서 제공하는 스크립트를 사용하시기 바랍니다.)

설치가 완료되면 대충 이런 식으로 확인할 수 있습니다.

$ /usr/local/cuda-12.9/bin/nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Apr__9_19:24:57_PDT_2025
Cuda compilation tools, release 12.9, V12.9.41
Build cuda_12.9.r12.9/compiler.35813241_0

$ which nvidia-smi
/usr/lib/wsl/lib/nvidia-smi

$ nvidia-smi
Wed May 21 14:02:16 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.51.02              Driver Version: 576.02         CUDA Version: 12.9     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4060 Ti     On  |   00000000:01:00.0  On |                  N/A |
|  0%   29C    P8             10W /  160W |    4985MiB /   8188MiB |      9%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

이제 pip install로 cudnn을 설치하고,

'''
   conda create --name pybuild python=3.10 -y
   conda activate pybuild
'''

$ python -m pip install nvidia-cudnn-cu12

예제 코드를,

'''
   python -m pip install tensorflow
'''

$ cat test.py
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())


실행하면 이런 결과가 나옵니다.

'''
   python -m pip install matplotlib
'''

$ python test.py
2025-04-05 14:25:36.487499: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747805136.595973   99583 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747805136.629660   99583 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747805136.877554   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877642   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877650   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747805136.877653   99583 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-05 14:25:36.899923: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Num GPUs Available:  1
I0000 00:00:1747805140.710462   99583 gpu_device.cc:2019] Created device /device:GPU:0 with 5529 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 4060 Ti, pci bus id: 0000:01:00.0, compute capability: 8.9
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 1437687304491415990
xla_global_id: -1
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 5797576704
locality {
  bus_id: 1
  links {
  }
}
incarnation: 10535418989602502258
physical_device_desc: "device: 0, name: NVIDIA GeForce RTX 4060 Ti, pci bus id: 0000:01:00.0, compute capability: 8.9"
xla_global_id: 416903419
]

초기에 오류 메시지가 나오긴 하는데, 일단 GPU 장치가 인식은 됩니다. 이후 예전에 작성했던 머신 러닝 예제 코드를 돌리면 작업 관리자의 GPU 사용량이 이렇게 올라가는 것을 확인할 수 있습니다.

tensorflow_gpu_on_wsl2_1.png




참고로, cuda toolkit이나 cudnn 없이 예제 코드(list_physical_devices)를 실행하면 이런 결과가 나오는데요,

$ python test.py
2025-04-05 14:14:24.671434: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1747804464.812065   97533 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1747804464.849271   97533 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1747804465.141418   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141520   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141526   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1747804465.141529   97533 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-05 14:14:25.174985: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
W0000 00:00:1747804469.517589   97533 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
Num GPUs Available:  0
W0000 00:00:1747804469.522848   97533 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 6212249524767843787
xla_global_id: -1
]

보는 바와 같이 "/device:CPU:0"만 나옵니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/24/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  52  53  [54]  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12605정성태4/18/202117634.NET Framework: 1041. C# - AssemblyID, ModuleID를 관리 코드에서 구하는 방법파일 다운로드1
12604정성태4/18/202115506VS.NET IDE: 163. 비주얼 스튜디오 속성 창의 "Build(빌드)" / "Configuration(구성)"에서의 "활성" 의미
12603정성태4/16/202117152VS.NET IDE: 162. 비주얼 스튜디오 - 상속받은 컨트롤이 디자인 창에서 지원되지 않는 문제
12602정성태4/16/202118126VS.NET IDE: 161. x64 DLL 프로젝트의 컨트롤이 Visual Studio의 Designer에서 보이지 않는 문제 [1]
12601정성태4/15/202117212.NET Framework: 1040. C# - REST API 대신 github 클라이언트 라이브러리를 통해 프로그래밍으로 접근
12600정성태4/15/202117514.NET Framework: 1039. C# - Kubeconfig의 token 설정 및 인증서 구성을 자동화하는 프로그램
12599정성태4/14/202118150.NET Framework: 1038. C# - 인증서 및 키 파일로부터 pfx/p12 파일을 생성하는 방법파일 다운로드1
12598정성태4/14/202118873.NET Framework: 1037. openssl의 PEM 개인키 파일을 .NET RSACryptoServiceProvider에서 사용하는 방법 (2)파일 다운로드1
12597정성태4/13/202118131개발 환경 구성: 569. csproj의 내용을 공통 설정할 수 있는 Directory.Build.targets / Directory.Build.props 파일
12596정성태4/12/202117396개발 환경 구성: 568. Windows의 80 포트 점유를 해제하는 방법
12595정성태4/12/202117537.NET Framework: 1036. SQL 서버 - varbinary 타입에 대한 문자열의 CAST, CONVERT 변환을 C# 코드로 구현
12594정성태4/11/202116985.NET Framework: 1035. C# - kubectl 명령어 또는 REST API 대신 Kubernetes 클라이언트 라이브러리를 통해 프로그래밍으로 접근 [1]파일 다운로드1
12593정성태4/10/202117780개발 환경 구성: 567. Docker Desktop for Windows - kubectl proxy 없이 k8s 대시보드 접근 방법
12592정성태4/10/202117360개발 환경 구성: 566. Docker Desktop for Windows - k8s dashboard의 Kubeconfig 로그인 및 Skip 방법
12591정성태4/9/202121339.NET Framework: 1034. C# - byte 배열을 Hex(16진수) 문자열로 고속 변환하는 방법 [2]파일 다운로드1
12590정성태4/9/202117663.NET Framework: 1033. C# - .NET 4.0 이하에서 Console.IsInputRedirected 구현 [1]
12589정성태4/8/202118572.NET Framework: 1032. C# - Environment.OSVersion의 문제점 및 윈도우 운영체제의 버전을 구하는 다양한 방법 [1]
12588정성태4/7/202120562개발 환경 구성: 565. PowerShell - New-SelfSignedCertificate를 사용해 CA 인증서 생성 및 인증서 서명 방법
12587정성태4/6/202121900개발 환경 구성: 564. Windows 10 - ClickOnce 배포처럼 사용할 수 있는 MSIX 설치 파일 [1]
12586정성태4/5/202118786오류 유형: 710. Windows - Restart-Computer / shutdown 명령어 수행 시 Access is denied(E_ACCESSDENIED)
12585정성태4/5/202117655개발 환경 구성: 563. 기본 생성된 kubeconfig 파일의 내용을 새롭게 생성한 인증서로 구성하는 방법
12584정성태4/1/202118850개발 환경 구성: 562. kubeconfig 파일 없이 kubectl 옵션만으로 실행하는 방법
12583정성태3/29/202119591개발 환경 구성: 561. kubectl 수행 시 다른 k8s 클러스터로 접속하는 방법
12582정성태3/29/202119156오류 유형: 709. Visual C++ - 컴파일 에러 error C2059: syntax error: '__stdcall'
12581정성태3/28/202119145.NET Framework: 1031. WinForm/WPF에서 Console 창을 띄워 출력하는 방법 (2) - Output 디버깅 출력을 AllocConsole로 우회 [2]
12580정성태3/28/202116928오류 유형: 708. SQL Server Management Studio - Execution Timeout Expired.
... 46  47  48  49  50  51  52  53  [54]  55  56  57  58  59  60  ...