Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

eBPF - BPF_PROG_TYPE_CGROUP_SOCK 유형에서 정상 동작하지 않는 BPF_CORE_READ

아래의 문서에 실린,

Program type BPF_PROG_TYPE_CGROUP_SOCK
; https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_CGROUP_SOCK/#context

예제를 잠시 실습해 봤는데요, 해당 예제를 참고해 bpf_sock 구조체의,

// https://codebrowser.dev/linux/include/linux/bpf.h.html#bpf_sock
// cat /usr/include/linux/bpf.h | grep -A 17 "struct bpf_sock {"
// cat vmlinux.h | grep -A 15 "struct bpf_sock {"

struct bpf_sock {
    __u32 bound_dev_if;
    __u32 family;
    __u32 type;
    __u32 protocol;
    __u32 mark;
    __u32 priority;
    /* IP address also allows 1 and 2 bytes access */
    __u32 src_ip4;
    __u32 src_ip6[4];
    __u32 src_port;     /* host byte order */
    __be16 dst_port;    /* network byte order */
    __u16 :16;      /* zero padding */
    __u32 dst_ip4;
    __u32 dst_ip6[4];
    __u32 state;
    __s32 rx_queue_mapping;
};

필드를 BPF_CORE_READ 매크로 또는 bpf_core_read 함수를 사용해 접근해 봤습니다. 그런데, 여기서 재미있는 현상이 발생하는데요, 예를 들어, family 필드를 직접 접근하면 정상적으로 값이 나오는데,

SEC("cgroup/sock_create")
int sock(struct bpf_sock *ctx)
{
    __u32 family = ctx->family; // AF_INET == 2, AF_INET6 == 10

   return 1;
}

반면, BPF_CORE_READ 또는 bpf_core_read로 바꿨더니 0이 반환됩니다.

// BPF_CORE_READ 매크로를 사용한 경우
__u64 family = BPF_CORE_READ(ctx, family); // family == 0

// 또는, bpf_core_read를 직접 사용
__u64 family;
bpf_core_read(&family3, sizeof(family3), &ctx->family); // family == 0

검색해 보면 이와 유사한 문제를 겪는 글이 나오는데요,

eBPF `bpf_core_read` returns incorrect value
; https://unix.stackexchange.com/questions/787851/ebpf-bpf-core-read-returns-incorrect-value

혹시나 싶어 저도 코드를 간단하게 바꾼 후 ELF 바이너리를 덤프했더니 이런 결과가 나왔습니다.

/*
SEC("cgroup/sock_create")
int sock(struct bpf_sock *ctx)
{
    __u32 family = ctx->family;
    return family; // 원래는 1 또는 0을 반환하지만, 최적화 과정에서 사용하지 않는 family 관련 코드를 제거하지 못하도록 일부러 사용
}
*/

$ llvm-objdump -d test_x86_bpfel.o
0000000000000000 <socket_create>:
       0:       61 10 04 00 00 00 00 00 r0 = *(u32 *)(r1 + 0x4) // 0x4 == family 필드의 offset
       1:       95 00 00 00 00 00 00 00 exit

/*
// https://github.com/iovisor/bpf-docs/blob/master/eBPF.md

0x61 == ldxw dst, [src+off] == dst = *(uint32_t *) (src + off)
0x95 == exit                == return r0
*/

일단, 직접 접근한 경우에 r1은 socket_create 함수의 첫 번째 인자인 ctx를 가리키고 그것의 0x4 위치에 있는 값을 가져오고 있는데요, struct bpf_sock 구조체의 family 필드가 0x4 offset에 있기 때문에 올바른 접근입니다.

이제 이것을 bpf_core_read로 바꾸면,

/*
__u32 family;
bpf_core_read(&family, sizeof(family), &ctx->family);
return family;
*/

$ llvm-objdump -d test_x86_bpfel.o
0000000000000000 <socket_create>:
       0:       bf 13 00 00 00 00 00 00 r3 = r1
       1:       b7 01 00 00 04 00 00 00 r1 = 0x4
       2:       0f 13 00 00 00 00 00 00 r3 += r1 // r3 == family 필드의 pointer
       3:       bf a1 00 00 00 00 00 00 r1 = r10
       4:       07 01 00 00 fc ff ff ff r1 += -0x4 // family 지역 변수의 pointer
       5:       b7 02 00 00 04 00 00 00 r2 = 0x4   // sizeof(...) == 4
       6:       85 00 00 00 71 00 00 00 call 0x71  (r1 == family 변수 위치, r2 == size, r3 == pointer
       7:       61 a0 fc ff 00 00 00 00 r0 = *(u32 *)(r10 - 0x4)
       8:       95 00 00 00 00 00 00 00 exit

/*
Register r10 is the only register which is read-only and contains the frame pointer address in order to access the BPF stack space.

0xbf == mov dst, src        == dst = src
0xb7 == mov dst, imm        == dst = imm
0x0f == add dst, src        == dst += src
0xbf ...
0x07 == add dst, imm        == dst += imm
0xb7 ...
0x85 == call imm            == Function call (0x71 == bpf_probe_read_kernel)
0x61 == ldxw dst, [src+off] == dst = *(uint32_t *) (src + off)
0x95 ...
*/

그러니까, r1, r2, r3 레지스터가 bpf_probe_read_kernel 함수 호출의 인자로 사용되는데, 모두 올바르게 값이 설정된 것을 볼 수 있습니다. 즉, ebpf 바이너리 역시 정상적으로 생성된 것입니다.




그럼 bpf_probe_read_kernel 호출도 풀어볼까요?

const void* ptr1 = &ctx->family;
family = *(__u32*)ptr1;
bpf_printk("%d, %p\n", family, ptr1); // 출력 결과: 2, 0000000077255097

const void* ptr2 = __builtin_preserve_access_index(&ctx->family);
__u32 family2 = 0;
long result = bpf_probe_read_kernel(&family2, sizeof(family2), ptr2);
bpf_printk("%d, %d, %p\n", result, family2, ptr2); // 출력 결과: 0, 0, 0000000077255097

보는 바와 같이 ctx->family의 주소와 __builtin_preserve_access_index로 구한 주소가 같습니다. 동일한 주소에 대해 직접 접근하면 정상적인 값을 가져오고, bpf_probe_read_kernel로 접근하면 함수가 성공(반환값 == 0)은 하지만 읽어온 값은 0이 됩니다.

음... 더 이상 파고들 것이 없군요, ^^ 혹시 BPF_CORE_READ가 왜 저렇게 이상한 값을 반환하는지 아시는 분 계시나요? ^^




그건 그렇고 ctx로 넘어온 포인터의 주소가 유효한 가상 메모리 주소일까요?

64비트 리눅스의 경우 유저/커널의 가상 주소 범위가 128TB를 경계로 나뉜다고 알고 있는데, 그렇다면 0x0000000077255097 주소는 유저 영역에 속하는 주소입니다. 그렇다고 해서 bpf_probe_read_user 함수를 사용하면 아예 함수 실행 결과가 (0이 아닌) -14(EFAULT)를 반환하는데, 잘못된 주소를 접근하려고 했다는 뜻입니다.

$ cat /usr/include/asm-generic/errno-base.h | grep EFAULT
#define EFAULT          14      /* Bad address */

그런 면에서 커널 주소는 맞는 듯한데... 해석이 안 되는군요. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/30/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  83  84  [85]  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11871정성태4/16/201922462.NET Framework: 818. (번역글) .NET Internals Cookbook Part 3 - Initialization tricks [3]파일 다운로드1
11870정성태4/16/201922332.NET Framework: 817. Process.Start로 실행한 콘솔 프로그램의 출력 결과를 얻는 방법파일 다운로드1
11869정성태4/15/201929109.NET Framework: 816. (번역글) .NET Internals Cookbook Part 2 - GC-related things [2]파일 다운로드2
11868정성태4/15/201924102.NET Framework: 815. CER(Constrained Execution Region)이란?파일 다운로드1
11867정성태4/15/201922835.NET Framework: 814. Critical Finalizer와 SafeHandle의 사용 의미파일 다운로드1
11866정성태4/9/201925374Windows: 159. 네트워크 공유 폴더(net use)에 대한 인증 정보는 언제까지 유효할까요?
11865정성태4/9/201921792오류 유형: 529. 제어판 - C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Administrative Tools is not accessible.
11864정성태4/9/201920314오류 유형: 528. '...' could be '0': this does not adhere to the specification for the function '...'
11863정성태4/9/201920156디버깅 기술: 127. windbg - .NET x64 EXE의 EntryPoint
11862정성태4/7/201922238개발 환경 구성: 437. .NET EXE의 ASLR 기능을 끄는 방법
11861정성태4/6/201921521디버깅 기술: 126. windbg - .NET x86 CLR2/CLR4 EXE의 EntryPoint
11860정성태4/5/201926588오류 유형: 527. Visual C++ 컴파일 오류 - error C2220: warning treated as error - no 'object' file generated
11859정성태4/4/201923612디버깅 기술: 125. WinDbg로 EXE의 EntryPoint에서 BP 거는 방법
11858정성태3/27/201924931VC++: 129. EXE를 LoadLibrary로 로딩해 PE 헤더에 있는 EntryPoint를 직접 호출하는 방법파일 다운로드1
11857정성태3/26/201921561VC++: 128. strncpy 사용 시 주의 사항(Linux / Windows)
11856정성태3/25/201922400VS.NET IDE: 134. 마이크로소프트의 CoreCLR 프로파일러 리눅스 예제를 Visual Studio F5 원격 디버깅하는 방법 [1]파일 다운로드1
11855정성태3/25/201924892개발 환경 구성: 436. 페이스북 HTTPS 인증을 localhost에서 테스트하는 방법
11854정성태3/25/201920149VS.NET IDE: 133. IIS Express로 호스팅하는 사이트를 https로 접근하는 방법
11853정성태3/24/201923281개발 환경 구성: 435. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면? - 두 번째 이야기 [1]
11852정성태3/20/201921303개발 환경 구성: 434. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면?파일 다운로드1
11851정성태3/19/201925176Linux: 8. C# - 리눅스 환경에서 DllImport 대신 라이브러리 동적 로드 처리 [2]
11850정성태3/18/201925432.NET Framework: 813. C# async 메서드에서 out/ref/in 유형의 인자를 사용하지 못하는 이유
11849정성태3/18/201924201.NET Framework: 812. pscp.exe 기능을 C#으로 제어하는 방법파일 다운로드1
11848정성태3/17/201921313스크립트: 14. 윈도우 CMD - 파일이 변경된 경우 파일명을 변경해 복사하고 싶다면?
11847정성태3/17/201925739Linux: 7. 리눅스 C/C++ - 공유 라이브러리 동적 로딩 후 export 함수 사용 방법파일 다운로드1
11846정성태3/15/201924528Linux: 6. getenv, setenv가 언어/운영체제마다 호환이 안 되는 문제
... 76  77  78  79  80  81  82  83  84  [85]  86  87  88  89  90  ...