Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24573
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  83  84  [85]  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11812정성태2/11/201915725오류 유형: 511. Windows Server 2003 VM 부팅 후 로그인 시점에 0xC0000005 BSOD 발생
11811정성태2/11/201921096오류 유형: 510. 서버 운영체제에 NVIDIA GeForce Experience 실행 시 wlanapi.dll 누락 문제
11810정성태2/11/201918647.NET Framework: 808. .NET Profiler - GAC 모듈에서 GAC 비-등록 모듈을 참조하는 경우의 문제
11809정성태2/11/201920811.NET Framework: 807. ClrMD를 이용해 메모리 덤프 파일로부터 특정 인스턴스를 참조하고 있는 소유자 확인
11808정성태2/8/201922143디버깅 기술: 123. windbg - 닷넷 응용 프로그램의 메모리 누수 분석
11807정성태1/29/201920035Windows: 156. 가상 디스크의 용량을 복구 파티션으로 인해 늘리지 못하는 경우 [4]
11806정성태1/29/201919669디버깅 기술: 122. windbg - 덤프 파일로부터 PID와 환경 변수 등의 정보를 구하는 방법
11805정성태1/28/201921847.NET Framework: 806. C# - int []와 object []의 차이로 이해하는 제네릭의 필요성 [4]파일 다운로드1
11804정성태1/24/201919679Windows: 155. diskpart - remove letter 이후 재부팅 시 다시 드라이브 문자가 할당되는 경우
11803정성태1/10/201918624디버깅 기술: 121. windbg - 닷넷 Finalizer 스레드가 멈춰있는 현상
11802정성태1/7/201920260.NET Framework: 805. 두 개의 윈도우를 각각 실행하는 방법(Windows Forms, WPF)파일 다운로드1
11801정성태1/1/201921576개발 환경 구성: 427. Netsh의 네트워크 모니터링 기능 [3]
11800정성태12/28/201820640오류 유형: 509. WCF 호출 오류 메시지 - System.ServiceModel.CommunicationException: Internal Server Error
11799정성태12/19/201822451.NET Framework: 804. WPF(또는 WinForm)에서 UWP UI 구성 요소 사용하는 방법 [3]파일 다운로드1
11798정성태12/19/201821284개발 환경 구성: 426. vcpkg - "Building vcpkg.exe failed. Please ensure you have installed Visual Studio with the Desktop C++ workload and the Windows SDK for Desktop C++"
11797정성태12/19/201817268개발 환경 구성: 425. vcpkg - CMake Error: Problem with archive_write_header(): Can't create '' 빌드 오류
11796정성태12/19/201817608개발 환경 구성: 424. vcpkg - "File does not have expected hash" 오류를 무시하는 방법
11795정성태12/19/201820927Windows: 154. PowerShell - Zone 별로 DNS 레코드 유형 정보 조회 [1]
11794정성태12/16/201816979오류 유형: 508. Get-AzureWebsite : Request to a downlevel service failed.
11793정성태12/16/201819570개발 환경 구성: 423. NuGet 패키지 제작 - Native와 Managed DLL을 분리하는 방법 [1]
11792정성태12/11/201819212Graphics: 34. .NET으로 구현하는 OpenGL (11) - Per-Pixel Lighting파일 다운로드1
11791정성태12/11/201819246VS.NET IDE: 130. C/C++ 프로젝트의 시작 프로그램으로 .NET Core EXE를 지정하는 경우 닷넷 디버깅이 안 되는 문제 [1]
11790정성태12/11/201817808오류 유형: 507. Could not save daemon configuration to C:\ProgramData\Docker\config\daemon.json: Access to the path 'C:\ProgramData\Docker\config' is denied.
11789정성태12/10/201831487Windows: 153. C# - USB 장치의 연결 및 해제 알림을 위한 WM_DEVICECHANGE 메시지 처리 [2]파일 다운로드2
11788정성태12/4/201817678오류 유형: 506. SqlClient - Value was either too large or too small for an Int32.Couldn't store <2151292191> in ... Column
11787정성태11/29/201821868Graphics: 33. .NET으로 구현하는 OpenGL (9), (10) - OBJ File Format, Loading 3D Models파일 다운로드1
... 76  77  78  79  80  81  82  83  84  [85]  86  87  88  89  90  ...