Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 16  17  18  19  20  21  22  23  24  [25]  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
13348정성태5/10/202314279.NET Framework: 2119. C# - Semantic Kernel의 "Basic Loading of the Kernel" 예제
13347정성태5/10/202314730.NET Framework: 2118. C# - Semantic Kernel의 Prompt chaining 예제파일 다운로드1
13346정성태5/10/202314098오류 유형: 858. RDP 원격 환경과 로컬 PC 간의 Ctrl+C, Ctrl+V 복사가 안 되는 문제
13345정성태5/9/202316325.NET Framework: 2117. C# - (OpenAI 기반의) Microsoft Semantic Kernel을 이용한 자연어 처리 [1]파일 다운로드1
13344정성태5/9/202317037.NET Framework: 2116. C# - OpenAI API 사용 - 지원 모델 목록 [1]파일 다운로드1
13343정성태5/9/202314681디버깅 기술: 192. Windbg - Hyper-V VM으로 이더넷 원격 디버깅 연결하는 방법
13342정성태5/8/202312721.NET Framework: 2115. System.Text.Json의 역직렬화 시 필드/속성 주의
13341정성태5/8/202312776닷넷: 2114. C# 12 - 모든 형식의 별칭(Using aliases for any type)
13340정성태5/8/202312983오류 유형: 857. Microsoft.Data.SqlClient.SqlException - 0x80131904
13339정성태5/6/202314711닷넷: 2113. C# 12 - 기본 생성자(Primary Constructors)
13338정성태5/6/202312670닷넷: 2112. C# 12 - 기본 람다 매개 변수파일 다운로드1
13337정성태5/5/202314153Linux: 59. dockerfile - docker exec로 container에 접속 시 자동으로 실행되는 코드 적용
13336정성태5/4/202313742.NET Framework: 2111. C# - 바이너리 출력 디렉터리와 연관된 csproj 설정
13335정성태4/30/202314884.NET Framework: 2110. C# - FFmpeg.AutoGen 라이브러리를 이용한 기본 프로젝트 구성 - Windows Forms파일 다운로드1
13334정성태4/29/202313774Windows: 250. Win32 C/C++ - Modal 메시지 루프 내에서 SetWindowsHookEx를 이용한 Thread 메시지 처리 방법
13333정성태4/28/202311456Windows: 249. Win32 C/C++ - 대화창 템플릿을 런타임에 코딩해서 사용파일 다운로드1
13332정성태4/27/202312175Windows: 248. Win32 C/C++ - 대화창을 위한 메시지 루프 사용자 정의파일 다운로드1
13331정성태4/27/202311478오류 유형: 856. dockerfile - 구 버전의 .NET Core 이미지 사용 시 apt update 오류
13330정성태4/26/202312746Windows: 247. Win32 C/C++ - CS_GLOBALCLASS 설명
13329정성태4/24/202312997Windows: 246. Win32 C/C++ - 직접 띄운 대화창 템플릿을 위한 Modal 메시지 루프 생성파일 다운로드1
13328정성태4/19/202312673VS.NET IDE: 184. Visual Studio - Fine Code Coverage에서 동작하지 않는 Fake/Shim 테스트
13327정성태4/19/202312970VS.NET IDE: 183. C# - .NET Core/5+ 환경에서 Fakes를 이용한 단위 테스트 방법
13326정성태4/18/202315758.NET Framework: 2109. C# - 닷넷 응용 프로그램에서 SQLite 사용 (System.Data.SQLite) [1]파일 다운로드1
13325정성태4/18/202313519스크립트: 48. 파이썬 - PostgreSQL의 with 문을 사용한 경우 연결 개체 누수
13324정성태4/17/202314033.NET Framework: 2108. C# - Octave의 "save -binary ..."로 생성한 바이너리 파일 분석파일 다운로드1
13323정성태4/16/202313666개발 환경 구성: 677. Octave에서 Excel read/write를 위한 io 패키지 설치
... 16  17  18  19  20  21  22  23  24  [25]  26  27  28  29  30  ...