Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  [78]  79  80  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11986정성태7/17/201916945오류 유형: 557. 드라이브 문자를 할당하지 않은 파티션을 탐색기에서 드라이브 문자와 함께 보여주는 문제
11985정성태7/17/201917087개발 환경 구성: 452. msbuild - csproj에 환경 변수 조건 사용 [1]
11984정성태7/9/201925625개발 환경 구성: 451. Microsoft Edge (Chromium)을 대상으로 한 Selenium WebDriver 사용법 [1]
11983정성태7/8/201914952오류 유형: 556. nodemon - 'mocha' is not recognized as an internal or external command, operable program or batch file.
11982정성태7/8/201915021오류 유형: 555. Visual Studio 빌드 오류 - result: unexpected exception occured (-1002 - 0xfffffc16)
11981정성태7/7/201918092Math: 64. C# - 3층 구조의 신경망(분류)파일 다운로드1
11980정성태7/7/201928242개발 환경 구성: 450. Visual Studio Code의 Java 확장을 이용한 간단한 프로젝트 구축파일 다운로드1
11979정성태7/7/201918517개발 환경 구성: 449. TFS에서 gitlab/github등의 git 서버로 마이그레이션하는 방법
11978정성태7/6/201917733Windows: 161. 계정 정보가 동일하지 않은 PC 간의 인증을 수행하는 방법 [1]
11977정성태7/6/201922329오류 유형: 554. git push - error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large
11976정성태7/4/201916719오류 유형: 553. (잘못 인증 한 후) 원격 git repo 재인증 시 "remote: HTTP Basic: Access denied" 오류 발생
11975정성태7/4/201925492개발 환경 구성: 448. Visual Studio Code에서 콘솔 응용 프로그램 개발 시 "입력"받는 방법
11974정성태7/4/201921224Linux: 22. "Visual Studio Code + Remote Development"로 윈도우 환경에서 리눅스(CentOS 7) C/C++ 개발
11973정성태7/4/201919958Linux: 21. 리눅스에서 공유 라이브러리가 로드되지 않는다면?
11972정성태7/3/201923776.NET Framework: 847. JAVA와 .NET 간의 AES 암호화 연동 [1]파일 다운로드1
11971정성태7/3/201920017개발 환경 구성: 447. Visual Studio Code에서 OpenCvSharp 개발 환경 구성
11970정성태7/2/201918615오류 유형: 552. 웹 브라우저에서 파일 다운로드 후 "Running security scan"이 끝나지 않는 문제
11969정성태7/2/201919102Math: 63. C# - 3층 구조의 신경망파일 다운로드1
11968정성태7/1/201925800오류 유형: 551. Visual Studio Code에서 Remote-SSH 연결 시 "Opening Remote..." 단계에서 진행되지 않는 문제 [1]
11967정성태7/1/201919847개발 환경 구성: 446. Synology NAS를 Windows 10에서 iSCSI로 연결하는 방법
11966정성태6/30/201918822Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화파일 다운로드1
11965정성태6/30/201919381.NET Framework: 846. C# - 2차원 배열을 1차원 배열로 나열하는 확장 메서드파일 다운로드1
11964정성태6/30/201920949Linux: 20. C# - Linux에서의 Named Pipe를 이용한 통신
11963정성태6/29/201920659Linux: 19. C# - .NET Core Unix Domain Socket 사용 예제
11962정성태6/27/201918322Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류파일 다운로드1
11961정성태6/27/201917856Graphics: 37. C# - PLplot - 출력 모음(Family File Output)
... 76  77  [78]  79  80  81  82  83  84  85  86  87  88  89  90  ...