Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  83  84  85  86  87  88  89  [90]  ...
NoWriterDateCnt.TitleFile(s)
11778정성태11/14/201822749.NET Framework: 803. UWP 앱에서 한 컴퓨터(localhost, 127.0.0.1) 내에서의 소켓 연결
11777정성태11/13/201824595오류 유형: 502. Your project does not reference "..." framework. Add a reference to "..." in the "TargetFrameworks" property of your project file and then re-run NuGet restore.
11776정성태11/13/201822900.NET Framework: 802. Windows에 로그인한 계정이 마이크로소프트의 계정인지, 로컬 계정인지 알아내는 방법
11775정성태11/13/201823306Graphics: 31. .NET으로 구현하는 OpenGL (6) - Texturing파일 다운로드1
11774정성태11/8/201823217Graphics: 30. .NET으로 구현하는 OpenGL (4), (5) - Shader파일 다운로드1
11773정성태11/7/201823057Graphics: 29. .NET으로 구현하는 OpenGL (3) - Index Buffer파일 다운로드1
11772정성태11/6/201823900Graphics: 28. .NET으로 구현하는 OpenGL (2) - VAO, VBO파일 다운로드1
11771정성태11/5/201822894사물인터넷: 56. Audio Jack 커넥터의 IR 적외선 송신기 - 두 번째 이야기 [1]
11770정성태11/5/201832894Graphics: 27. .NET으로 구현하는 OpenGL (1) - OpenGL.Net 라이브러리 [3]파일 다운로드1
11769정성태11/5/201822063오류 유형: 501. 프로젝트 msbuild Publish 후 connectionStrings의 문자열이 $(ReplacableToken_...)로 바뀌는 문제
11768정성태11/2/201824717.NET Framework: 801. SOIL(Simple OpenGL Image Library) - Native DLL 및 .NET DLL 제공
11767정성태11/1/201823967사물인터넷: 55. New NodeMcu v3(ESP8266)의 IR LED (적외선 송신) 제어파일 다운로드1
11766정성태10/31/201827257사물인터넷: 54. 아두이노 환경에서의 JSON 파서(ArduinoJson) 사용법
11765정성태10/26/201822709개발 환경 구성: 420. Visual Studio Code - Arduino Board Manager를 이용한 사용자 정의 보드 선택
11764정성태10/26/201828552개발 환경 구성: 419. MIT 라이선스로 무료 공개된 Detours API 후킹 라이브러리 [2]
11763정성태10/25/201823851사물인터넷: 53. New NodeMcu v3(ESP8266)의 https 통신
11762정성태10/25/201824413사물인터넷: 52. New NodeMCU v3(ESP8266)의 http 통신파일 다운로드1
11761정성태10/25/201824125Graphics: 26. 임의 축을 기반으로 3D 벡터 회전파일 다운로드1
11760정성태10/24/201819675개발 환경 구성: 418. Azure - Runbook 내에서 또 다른 Runbook 스크립트를 실행
11759정성태10/24/201822455개발 환경 구성: 417. Azure - Runbook에서 사용할 수 있는 다양한 메서드를 위한 부가 Module 추가
11758정성태10/23/201825310.NET Framework: 800. C# - Azure REST API 사용을 위한 인증 획득 [3]파일 다운로드1
11757정성태10/19/201820938개발 환경 구성: 416. Visual Studio 2017을 이용한 아두이노 프로그램 개발(및 디버깅)
11756정성태10/19/201825088오류 유형: 500. Visual Studio Code의 아두이노 프로그램 개발 시 인텔리센스가 안 된다면?
11755정성태10/19/201826083오류 유형: 499. Visual Studio Code extension for Arduino - #include errors detected. [1]
11754정성태10/19/201822807개발 환경 구성: 415. Visual Studio Code를 이용한 아두이노 프로그램 개발 - 새 프로젝트
11753정성태10/19/201828700개발 환경 구성: 414. Visual Studio Code를 이용한 아두이노 프로그램 개발
... 76  77  78  79  80  81  82  83  84  85  86  87  88  89  [90]  ...