Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사]
조회: 1329
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/30/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




1  [2]  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12315정성태9/7/2020245개발 환경 구성: 510. Logstash - FileBeat을 이용한 IIS 로그 처리 [2]
12314정성태9/7/2020161오류 유형: 645. IIS HTTPERR - Timer_MinBytesPerSecond, Timer_ConnectionIdle 로그
12313정성태9/7/2020310개발 환경 구성: 509. Logstash - 사용자 정의 grok 패턴 추가를 이용한 IIS 로그 처리
12312정성태9/5/2020244개발 환경 구성: 508. Logstash 기본 사용법
12311정성태9/4/2020366.NET Framework: 937. C# - 간단하게 만들어 보는 리눅스의 nc(netcat) 프로그램
12310정성태9/3/2020160오류 유형: 644. Windows could not start the Elasticsearch 7.9.0 (elasticsearch-service-x64) service on Local Computer.
12309정성태9/3/2020211개발 환경 구성: 507. Elasticsearch 6.6부터 기본 추가된 한글 형태소 분석기 노리(nori) 사용법
12308정성태9/2/2020270개발 환경 구성: 506. Windows - 단일 머신에서 단일 바이너리로 여러 개의 ElasticSearch 노드를 실행하는 방법
12307정성태9/2/2020166오류 유형: 643. curl - json_parse_exception / Invalid UTF-8 start byte
12306정성태9/1/2020172오류 유형: 642. SQL Server 시작 오류 - error code 10013
12305정성태9/1/2020215Windows: 170. "Administered port exclusions"이 아닌 포트 범위 항목을 삭제하는 방법
12304정성태9/1/2020270개발 환경 구성: 505. 윈도우 - (네트워크 어댑터의 우선 순위로 인한) 열거되는 IP 주소 순서를 조정하는 방법
12303정성태8/30/2020251개발 환경 구성: 504. ETW - 닷넷 프레임워크 기반의 응용 프로그램을 위한 명령행 도구 etrace 소개
12302정성태8/30/2020188.NET Framework: 936. C# - ETW 관련 Win32 API 사용 예제 코드 (5) - Private Logger파일 다운로드1
12301정성태8/30/2020146오류 유형: 641. error MSB4044: The "Fody.WeavingTask" task was not given a value for the required parameter "IntermediateDir".
12300정성태8/29/2020158.NET Framework: 935. C# - ETW 관련 Win32 API 사용 예제 코드 (4) CLR ETW Consumer파일 다운로드1
12299정성태8/29/2020181.NET Framework: 934. C# - ETW 관련 Win32 API 사용 예제 코드 (3) ETW Consumer 구현파일 다운로드1
12298정성태8/27/2020137오류 유형: 640. livekd - Could not resolve symbols for ntoskrnl.exe: MmPfnDatabase
12297정성태8/25/2020160개발 환경 구성: 503. SHA256 테스트 인증서 생성 방법
12296정성태8/29/2020203.NET Framework: 933. C# - ETW 관련 Win32 API 사용 예제 코드 (2) NT Kernel Logger파일 다운로드1
12295정성태8/24/2020158오류 유형: 639. Bitvise - Address is already in use; bind() in ListeningSocket::StartListening() failed: Windows error 10013: An attempt was made to access a socket ,,,
12293정성태8/24/2020210Windows: 169. "Administered port exclusions" 설명
12292정성태8/29/2020281.NET Framework: 932. C# - ETW 관련 Win32 API 사용 예제 코드 (1)파일 다운로드2
12291정성태8/15/2020173오류 유형: 638. error 1297: Device driver does not install on any devices, use primitive driver if this is intended.
12290정성태8/11/2020495.NET Framework: 931. C# - IP 주소에 따른 국가별 위치 확인 [1]파일 다운로드1
12289정성태8/6/2020286개발 환경 구성: 502. Portainer에 윈도우 컨테이너를 등록하는 방법
1  [2]  3  4  5  6  7  8  9  10  11  12  13  14  15  ...