Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 22452
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
14013정성태9/14/2025437닷넷: 2363. C# - Whisper.NET Library를 이용해 음성을 텍스트로 변환 및 번역하는 예제파일 다운로드1
14012정성태9/9/2025821닷넷: 2362. C# - Windows.Media.Ocr: 윈도우 운영체제에 포함된 OCR(Optical Character Recognition)파일 다운로드1
14011정성태9/7/20251406닷넷: 2361. C# - Linux 환경의 readlink 호출
14010정성태9/1/20251505오류 유형: 983. apt update 시 "The repository 'http://deb.debian.org/debian buster Release' does not have a Release file." 오류
14009정성태8/28/20251940닷넷: 2360. C# 14 - (11) Expression Tree에 선택적 인수와 명명된 인수 허용파일 다운로드1
14008정성태8/26/20252266닷넷: 2359. C# 14 - (10) 복합 대입 연산자의 오버로드 지원파일 다운로드1
14007정성태8/25/20252646닷넷: 2358. C# - 현재 빌드에 적용 중인 컴파일러 버전 확인 방법 (#error version)
14006정성태8/23/20252834Linux: 121. Linux - snap 패키지 관리자로 설치한 소프트웨어의 디렉터리 접근 제한
14005정성태8/21/20252307오류 유형: 982. sudo: unable to load /usr/libexec/sudo/sudoers.so: libssl.so.3: cannot open shared object file: No such file or directory
14004정성태8/21/20252600오류 유형: 981. dotnet 실행 시 No usable version of the libssl was found
14003정성태8/21/20252860닷넷: 2357. C# 14 - (9) 새로운 지시자 추가 (Ignored directives)
14002정성태8/20/20252847오류 유형: 980. C# - appsettings.json 파일의 설정값이 적용 안 된다면?
14001정성태8/19/20256091닷넷: 2356. .NET SDK 10 - 단일 소스 코드 파일을 빌드/실행하는 기능을 "dotnet" 명령어에 추가 [1]
14000정성태8/18/20252947오류 유형: 979. ERROR: failed to solve: failed to read dockerfile: open Dockerfile: no such file or directory
13999정성태8/15/20252906닷넷: 2355. C# 14 - (8) null 조건부 연산자 개선 - 대입문에도 사용 가능파일 다운로드1
13998정성태8/14/20252862닷넷: 2354. C# 14 - (7) 확장 메서드에 정적 메서드와 속성 지원을 위한 전용 구문 추가파일 다운로드1
13997정성태8/14/20252977Linux: 120. docker 컨테이너로 매핑된 볼륨에 컨테이너 측의 사용자 ID를 유지하면서 복사하는 방법
13996정성태8/13/20252431오류 유형: 978. Unable to find the requested .Net Framework Data Provider.
13995정성태8/13/20252607개발 환경 구성: 754. Visual C++ - 리눅스 빌드를 위한 Ubuntu 18 docker 컨테이너 설정
13994정성태8/12/20252331오류 유형: 977. SQL Server - User, group, or role '...' already exists in the current database. (Microsoft SQL Server, Error: 15023)
13993정성태8/11/20253141오류 유형: 976. Microsoft.ML.OnnxRuntimeGenAI 패키지 사용 시 "cublasLt64_12.dll" which is missing. (Error 126: "The specified module could not be found.") 오류
13992정성태8/11/20253097닷넷: 2353. C# - Foundry Local을 이용한 gpt-oss-20b 모델 사용파일 다운로드1
13991정성태8/9/20252837오류 유형: 975. winget - Foundry Local 패키지 업데이트가 안 되는 문제
13990정성태8/8/20252348Windows: 283. Time zone 설정이 없는 Windows Server 2025
13989정성태8/8/20253358닷넷: 2352. C# - Windows S-mode 환경인지 체크하는 방법파일 다운로드1
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...