Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사]
조회: 1339
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/30/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




1  2  3  4  [5]  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12239정성태6/21/2020294Linux: 30. (윈도우라면 DLL에 속하는) .so 파일이 텍스트로 구성된 사례
12238정성태6/21/2020328.NET Framework: 913. C# - SharpDX + DXGI를 이용한 윈도우 화면 캡처 라이브러리
12237정성태7/8/2020341.NET Framework: 912. 리눅스 환경의 .NET Core에서 "test".IndexOf("\0")가 0을 반환
12236정성태6/19/2020275오류 유형: 621. .NET Standard 대상으로 빌드 시 dynamic 예약어에서 컴파일 오류 - error CS0656: Missing compiler required member 'Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo.Create'
12235정성태6/19/2020265오류 유형: 620. Windows 10 - Inaccessible boot device 블루 스크린
12234정성태6/19/2020253개발 환경 구성: 494. NuGet - nuspec의 패키지 스키마 버전(네임스페이스) 업데이트 방법
12233정성태6/19/2020226오류 유형: 619. SQL 서버 - The transaction log for database '...' is full due to 'LOG_BACKUP'. - 두 번째 이야기
12232정성태6/19/2020198오류 유형: 618. SharePoint - StoreBusyRetryLater 오류
12231정성태6/15/2020385.NET Framework: 911. Console/Service Application을 위한 SynchronizationContext - AsyncContext
12230정성태6/15/2020245오류 유형: 617. IMetaDataImport::GetMethodProps가 반환하는 IL 코드 주소(RVA) 문제
12229정성태6/13/2020504.NET Framework: 910. USB/IP PROJECT를 이용해 C#으로 USB Keyboard + Mouse 가상 장치 만들기 [1]
12228정성태6/12/2020355.NET Framework: 909. C# - Source Generator를 적용한 XmlCodeGenerator파일 다운로드1
12227정성태6/12/20203108오류 유형: 616. Visual Studio의 느린 업데이트 속도에 대한 원인 분석 [5]
12226정성태6/19/2020388개발 환경 구성: 493. OpenVPN의 네트워크 구성파일 다운로드1
12225정성태6/11/2020403개발 환경 구성: 492. 윈도우에 OpenVPN 설치 - 클라이언트 측 구성
12224정성태6/11/2020803개발 환경 구성: 491. 윈도우에 OpenVPN 설치 - 서버 측 구성
12223정성태6/9/2020621.NET Framework: 908. C# - Source Generator 소개 [3]파일 다운로드1
12222정성태6/3/2020297VS.NET IDE: 146. error information: "CryptQueryObject" (-2147024893/0x80070003)
12221정성태9/24/2020308Windows: 170. 비어 있지 않은 디렉터리로 symbolic link(junction) 연결하는 방법
12220정성태6/3/2020322.NET Framework: 907. C# DLL로부터 TLB 및 C/C++ 헤더 파일(TLH)을 생성하는 방법
12219정성태6/1/2020529.NET Framework: 906. C# - lock (this), lock (typeof(...))를 사용하면 안 되는 이유파일 다운로드1
12218정성태5/31/2020492.NET Framework: 905. C# - DirectX 게임 클라이언트 실행 중 키보드 입력을 감지하는 방법 [1]
12217정성태5/24/2020307오류 유형: 615. Transaction count after EXECUTE indicates a mismatching number of BEGIN and COMMIT statements. Previous count = 0, current count = 1.
12216정성태5/15/2020488.NET Framework: 904. USB/IP PROJECT를 이용해 C#으로 USB Keyboard 가상 장치 만들기
12215정성태5/12/2020943개발 환경 구성: 490. C# - (Wireshark의) USBPcap을 이용한 USB 패킷 모니터링파일 다운로드1
12214정성태5/5/2020415개발 환경 구성: 489. 정식 인증서가 있는 경우 Device Driver 서명하는 방법 (2) - UEFI/SecureBoot
1  2  3  4  [5]  6  7  8  9  10  11  12  13  14  15  ...