Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 23252
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 181  182  183  184  185  186  [187]  188  189  190  191  192  193  194  195  ...
NoWriterDateCnt.TitleFile(s)
286정성태6/23/200622383웹: 4. 웹 사이트 식별자(Identifier) 값 변경
285정성태6/20/200622646오류 유형: 9. [TFS] Report 관련 서비스를 조회할 때 rsErrorImpersonatingUser 오류 메시지 발생 [1]
284정성태6/19/200620400VS.NET IDE: 40. FxCop - IDE 에서 제공해 주는 SuppressMessage 코드
283정성태1/19/200721284Team Foundation Server: 8. 소스 세이프에서 TFS SourceControl 로 마이그레이션 [2]
279정성태12/27/200626682개발 환경 구성: 3. VS.NET 원격 디버깅 [1]
280정성태6/12/200626138    답변글 개발 환경 구성: 3.1. VS.NET 2003 원격 디버깅 설정
281정성태8/11/200627626    답변글 개발 환경 구성: 3.2. VS.NET 2005 원격 디버깅 설정
315정성태8/11/200628268        답변글 개발 환경 구성: 3.3. VS.NET 2005 원격 디버깅 설정 - ASP.NET F5 디버깅
278정성태6/11/200624830오류 유형: 8. [Outlook] 0x8004011D 에러 - "Exchange over the Internet" 환경
276정성태6/7/200618255Team Foundation Server: 7. 외부 빌드 머신 구성
287정성태6/24/200615910    답변글 Team Foundation Server: 7.1. 외부 빌드 머신 구성 - 다른 블로그 자료
275정성태6/7/200623826디버깅 기술: 4. VC++ 8.0 원격 디버깅 구성 - Side-by-Side DLL 문제.
269정성태6/6/200621008Team Foundation Server: 6. HTTPS를 통한 Team Server 접근 [1]
270정성태6/5/200617976    답변글 Team Foundation Server: 6.1. HTTPS를 통한 Team Server 접근 [1]
273정성태6/6/200620699    답변글 Team Foundation Server: 6.2. 두번째 방법 - HTTPS 를 통한 Team Server 접근 [1]
267정성태6/4/200620011Team Foundation Server: 5. 인터넷으로 Team Server 접근 [2]
266정성태6/8/200616589오류 유형: 7. [설치] mpoai9.dll 관련 오류
265정성태6/1/200624316디버깅 기술: 3. 원격 컴퓨터 디버깅 - VPC 설정
314정성태8/11/200621421    답변글 디버깅 기술: 3.1. Managed 원격 디버깅과 WinDBG 원격 디버깅
264정성태6/1/200630511오류 유형: 6. [VC++ 컴파일] already defined in ntdll.lib(ntdll.dll)
263정성태6/1/200631451디버깅 기술: 2. 커널 구조체 살펴보기 [5]
262정성태6/1/200623829오류 유형: 5. [설치] WinFX Beta2 - 설치시 문제점 해결
261정성태6/1/200620268웹: 3. IIS 6.0 - AppPool을 활용하여 실 서버(운영 서버)에서 디버깅
258정성태6/1/200628189디버깅 기술: 1. 디버깅 방법 - CLR 프로파일러 [1]파일 다운로드1
274정성태6/7/200621107    답변글 디버깅 기술: 1.1. 디버깅 방법 - CLR 프로파일러 ( on Vista )
254정성태6/1/200617566개발 환경 구성: 2. VPC에 Vista 설치하는 방법 [2]
... 181  182  183  184  185  186  [187]  188  189  190  191  192  193  194  195  ...