Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 23167
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 181  182  183  184  185  186  187  188  189  190  191  [192]  193  194  195  ...
NoWriterDateCnt.TitleFile(s)
142정성태4/14/200517939    답변글 VS.NET IDE: 36.1. 메모리 구성에 대한 추가 내용
137정성태3/31/200522269.NET Framework: 35. XP SP2 팝업 뚫은 소스
135정성태3/31/200520999VS.NET IDE: 26. SQL Server 2000구성이 실패
134정성태3/31/200518197COM 개체 관련: 16. Microsoft.XMLHTTP 개체에서 Microsoft.XMLDOM 개체를 전송할 때 charset 지정 문제? [2]
128정성태3/30/200516590.NET Framework: 34. VC++에서 Managed 타입의 메서드에 BSTR을 넘기는 경우의 오류(!)
129정성태3/30/200518697    답변글 .NET Framework: 34.1. 위의 질문에 대한 답변으로 나온 것입니다.
130정성태3/30/200516002        답변글 .NET Framework: 34.2. 다시... 제가 질문한 내용입니다. ^^
131정성태3/30/200516535            답변글 .NET Framework: 34.3. 다시... 정봉겸님이 하신... 명확한 답변입니다.
126정성태3/26/200516354.NET Framework: 33. Proxy 환경에서의 Smart Client 업데이트 문제 [1]
133정성태3/31/200517490    답변글 .NET Framework: 33.1. [추가]: Proxy 환경에서의 Smart Client 업데이트 문제 [2]
125정성태3/26/200516429VC++: 15. VC++ Keyword
124정성태3/25/200516988.NET Framework: 32. 네트워크 공유 없이 상대 컴퓨터에 프로그램 설치
119정성태3/21/200516550.NET Framework: 31. 소스세이프 오류현상: 웹 프로젝트를 열수 없습니다.
120정성태3/21/200517895    답변글 .NET Framework: 31.1. 소스세이프 오류현상: PDB 파일이 잠기는 문제
121정성태3/21/200517918    답변글 .NET Framework: 31.2. 소스세이프 오류현상: VS.NET 2003 IDE 와 연동되는 소스세이프 버전 문제
122정성태3/21/200516624    답변글 .NET Framework: 31.3. 소스세이프 관련 사이트
160정성태11/14/200519547    답변글 VS.NET IDE: 31.4. [추가]: 웹 애플리케이션 로드시 "_1"을 붙여서 묻는 경우. [1]
196이문석12/23/200516337        답변글 .NET Framework: 31.8. [답변]: [추가]: 웹 애플리케이션 로드시 "_1" 을 붙여서 묻는 경우.
167정성태10/10/200515904    답변글 .NET Framework: 31.5. [추가]: 삭제한 웹 가상 디렉터리에 대해 동일한 이름으로 웹 공유를 설정할 때 - 이미 있다고 오류발생
190정성태12/11/200515227    답변글 VC++: 31.6. ASP.NET 소스세이프 오류현상: 다른 사람이 체크아웃 한 것을 또 다른 사람이 체크아웃 가능!
191정성태12/11/200517689    답변글 VC++: 31.7. 소스 세이프 사용 시, 특정 프로젝트의 빌드 체크가 솔루션 로드할 때마다 해제되는 경우
118정성태3/30/200623524VC++: 14. TCP through HTTP tunneling: 기업 내 Proxy 서버 제한에서 벗어나는 방법 [2]
117정성태3/19/200524590.NET Framework: 30. Process.Start에서의 인자 길이 제한 [4]
116정성태3/14/200517093.NET Framework: 29. [.NET WebService] 자동생성되는 WSDL 을 막는 방법.
115정성태3/13/200517682VS.NET IDE: 25. [IIS 서버] ODBC 로그 남기기 [1]
195정성태12/21/200516930    답변글 VC++: 25.1. ODBC 로그를 못 남길 때의 오류 화면
... 181  182  183  184  185  186  187  188  189  190  191  [192]  193  194  195  ...