Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 23118
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  [94]  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11584정성태7/5/201818303Math: 35. GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원파일 다운로드1
11583정성태7/5/201818133.NET Framework: 785. public으로 노출되지 않은 다른 어셈블리의 delegate 인스턴스를 Reflection으로 생성하는 방법파일 다운로드1
11582정성태7/5/201824711.NET Framework: 784. C# - 제네릭 인자를 가진 타입을 생성하는 방법 [1]파일 다운로드1
11581정성태7/4/201821421Math: 34. GeoGebra 기하 (11) - 3대 작도 불능 문제의 하나인 임의 각의 3등분파일 다운로드1
11580정성태7/4/201818255Math: 33. GeoGebra 기하 (10) - 직각의 3등분파일 다운로드1
11579정성태7/4/201817283Math: 32. GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형파일 다운로드1
11578정성태7/3/201817431Math: 31. GeoGebra 기하 (8) - 호(Arc)의 이등분파일 다운로드1
11577정성태7/3/201817392Math: 30. GeoGebra 기하 (7) - 각의 이등분파일 다운로드1
11576정성태7/3/201819584Math: 29. GeoGebra 기하 (6) - 대수의 4칙 연산파일 다운로드1
11575정성태7/2/201820013Math: 28. GeoGebra 기하 (5) - 선분을 n 등분하는 방법파일 다운로드1
11574정성태7/2/201818533Math: 27. GeoGebra 기하 (4) - 선분을 n 배 늘이는 방법파일 다운로드1
11573정성태7/2/201817872Math: 26. GeoGebra 기하 (3) - 평행선
11572정성태7/1/201817168.NET Framework: 783. C# 컴파일러가 허용하지 않는 (유효한) 코드를 컴파일해 테스트하는 방법
11571정성태7/1/201818640.NET Framework: 782. C# - JIRA에 등록된 Project의 Version 항목 추가하는 방법파일 다운로드1
11570정성태7/1/201818846Math: 25. GeoGebra 기하 (2) - 임의의 선분과 특정 점을 지나는 수직선파일 다운로드1
11569정성태7/1/201818055Math: 24. GeoGebra 기하 (1) - 수직 이등분선파일 다운로드1
11568정성태7/1/201830260Math: 23. GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램 [1]
11567정성태6/28/201819568.NET Framework: 781. C# - OpenCvSharp 사용 시 포인터를 이용한 속도 향상파일 다운로드1
11566정성태6/28/201825236.NET Framework: 780. C# - JIRA REST API 사용 정리 (1) Basic 인증 [4]파일 다운로드1
11565정성태6/28/201822091.NET Framework: 779. C# 7.3에서 enum을 boxing 없이 int로 변환하기 - 세 번째 이야기파일 다운로드1
11564정성태6/27/201820578.NET Framework: 778. (Unity가 사용하는) 모노 런타임의 __makeref 오류
11563정성태6/27/201819394개발 환경 구성: 386. .NET Framework Native compiler 프리뷰 버전 사용법 [2]
11562정성태6/26/201818830개발 환경 구성: 385. 레지스트리에 등록된 원격지 스크립트 COM 객체 실행 방법
11561정성태6/26/201830138.NET Framework: 777. UI 요소의 접근은 반드시 그 UI를 만든 스레드에서! [8]파일 다운로드1
11560정성태6/25/201821466.NET Framework: 776. C# 7.3 - 초기화 식에서 변수 사용 가능(expression variables in initializers)파일 다운로드1
11559정성태6/25/201828642개발 환경 구성: 384. 영문 설정의 Windows 10 명령행 창(cmd.exe)의 한글 지원 [6]
... 91  92  93  [94]  95  96  97  98  99  100  101  102  103  104  105  ...