Microsoft MVP성태의 닷넷 이야기
Graphics: 16. 3D 공간에서 두 점이 이루는 각도 구하기 [링크 복사], [링크+제목 복사],
조회: 31277
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

3D 공간에서 두 점이 이루는 각도 구하기

예를 들어, 다음과 같이 3D 공간에서 면과 점이 있다고 가정해 보겠습니다.

angle_between_two_0.png
(오른손 좌표계 시스템의 x-y-z 축을 사용하고 있습니다.)

이때 점 C와 점 A가 이루는 각도는 어떻게 될까요? 간단하게 점과 점의 위치를 빼서 벡터를 만들고,

점 C와 카메라의 벡터 = 점 C - 점 A
                    = (-1.4, -2.9, -5)

그 벡터가 이루는 각을 3차원에 따라 각 축 별로 3개의 각도를 구할 수 있습니다.

  • x-축을 기준으로 y-z 평면의 각
  • y-축을 기준으로 x-z 평면의 각
  • z-축을 기준으로 x-y 평면의 각

역시 시각화를 해보는 게 좋겠지요? ^^ GeoGebra 앱에서 "Home" 모양의 아이콘을 누르면,

angle_between_two_1.png

차례대로 "y축을 기준으로 x-z 평면", "z축을 기준으로 x-y 평면", "x축을 기준으로 y-z 평면" 상에서의 물체를 볼 수 있는 기능이 제공됩니다.

자... 멋진 툴이 있으니, 그럼 우선 첫 번째 아이콘인 "y축을 기준으로 x-z 평면"을 다음과 같이 볼 수 있습니다. ^^

angle_between_two_2_y.png

보는 바와 같이 x-z 평면에서 벡터가 이루는 각을 쉽게 확인할 수 있습니다. 점 A에서 x-축으로 수선의 발을 그렸을 때,

angle_between_two_3.png

직각 삼각형이 되고 이때 우리가 아는 벡터 A의 x, z 성분의 값으로 인해 아크 탄젠트 함수를 사용하면 점 A에서 이루는 각도를 구할 수 있습니다.

각 A = arc_tangent(vx, vz);

C# 코드로 구해 보면 다음과 같습니다.

Vector3 v3 = new Vector3(-1.4f, -2.9f, -5f);

{
    double yAngle = Math.Atan2(v3.X, v3.Z);
    Console.WriteLine(RadianToDegree(yAngle));
}

실행해 보면, -164.357753796137도가 나오는데, 벡터가 음의 방향이어서 그런 것일 뿐 180도를 빼면 약 15.6도가 나옵니다. 동일한 각도를 Geogebra 기하를 이용해서도 구해 볼까요? ^^

2차원 좌표계에서 x, z의 성분으로 점을 표시한 후 그와 연결한 벡터를 그리고 그 사잇각을 다음과 같이 구할 수 있습니다.

angle_between_two_4.png

잘 맞아 들어가는군요. ^^




마찬가지 방식으로 "z축을 기준으로 x-y 평면"과,

angle_between_two_2_z.png

"x축을 기준으로 y-z 평면" 상의 모습을 확인하며,

angle_between_two_2_x.png

각도를 구해 보면 이렇습니다.

Vector3 v3 = new Vector3(-1.4f, -2.9f, -5f);
Console.WriteLine("xAngle");
{
    double xAngle = Math.Atan2(v3.Y, v3.Z);
    Console.WriteLine(RadianToDegree(xAngle));
}

Console.WriteLine("yAngle");
{
    double yAngle = Math.Atan2(v3.X, v3.Z);
    Console.WriteLine(RadianToDegree(yAngle));
}

Console.WriteLine("zAngle");
{
    double zAngle = Math.Atan2(v3.Y, v3.X);
    Console.WriteLine(RadianToDegree(zAngle));
}

/*
출력 결과

xAngle
-149.886266031276
yAngle
-164.357753796137
zAngle
-115.769326504636
*/

(첨부 파일은 이 글에서 예제로 사용한 geogebra 파일입니다.)




참고로, 2개의 벡터가 이루는 각은 아크코사인을 이용해 구할 수 있습니다.

vector v1 = ...;
vector v2 = ...;

vector nv1 = normalize(v1);
vector nv2 = normalize(v2);

float angle = acos(mul(nv1, nv2));

일반적으로 acos의 정의역이 -1 ~ 1이기 때문에 정규화된 벡터의 내적 연산으로 NaN 값을 반환하는 경우는 없습니다. 문제는 0 벡터인 경우 normalize 하는 과정에서 NaN이 나온다는 것입니다.

vector v = vector(0, 0, 0, 0);
vector normal = normalize(v); // normal == NaN

왜냐하면 정규화라는 것이 벡터 크기로 나누는 것인데,

${
\hat v = \left ( \frac{ v_x }{ \Vert v \Vert }, \frac{ v_y }{ \Vert v \Vert }, \frac{ v_z }{ \Vert v \Vert } \right )
}$

분모가 0이 되므로 normalize의 결과가 NaN이 나옵니다. 이 때문에 mul 연산도 NaN이 되고, acos까지 NaN으로 끝납니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 8/1/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  [95]  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11590정성태7/7/201818896Math: 38. GeoGebra 기하 (15) - 삼각형의 수심파일 다운로드1
11589정성태7/7/201818511.NET Framework: 787. object로 형변환된 인스턴스를 원래의 타입 인자로 제네릭 메서드를 호출하는 방법 [2]파일 다운로드1
11588정성태7/7/201820052디버깅 기술: 116. windbg 분석 사례 - ASP.NET 웹 응용 프로그램의 CPU 100% 현상 (3)
11587정성태7/5/201820498.NET Framework: 786. ASP.NET - HttpCookieCollection을 다중 스레드에서 사용할 경우 무한 루프 현상
11586정성태7/5/201818909Math: 37. GeoGebra 기하 (14) - 삼각형의 무게 중심파일 다운로드1
11585정성태7/5/201819596Math: 36. GeoGebra 기하 (13) - 삼각형의 외심과 외접하는 원파일 다운로드1
11584정성태7/5/201818888Math: 35. GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원파일 다운로드1
11583정성태7/5/201819504.NET Framework: 785. public으로 노출되지 않은 다른 어셈블리의 delegate 인스턴스를 Reflection으로 생성하는 방법파일 다운로드1
11582정성태7/5/201825519.NET Framework: 784. C# - 제네릭 인자를 가진 타입을 생성하는 방법 [1]파일 다운로드1
11581정성태7/4/201822531Math: 34. GeoGebra 기하 (11) - 3대 작도 불능 문제의 하나인 임의 각의 3등분파일 다운로드1
11580정성태7/4/201819549Math: 33. GeoGebra 기하 (10) - 직각의 3등분파일 다운로드1
11579정성태7/4/201818189Math: 32. GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형파일 다운로드1
11578정성태7/3/201818299Math: 31. GeoGebra 기하 (8) - 호(Arc)의 이등분파일 다운로드1
11577정성태7/3/201818028Math: 30. GeoGebra 기하 (7) - 각의 이등분파일 다운로드1
11576정성태7/3/201821035Math: 29. GeoGebra 기하 (6) - 대수의 4칙 연산파일 다운로드1
11575정성태7/2/201821512Math: 28. GeoGebra 기하 (5) - 선분을 n 등분하는 방법파일 다운로드1
11574정성태7/2/201819994Math: 27. GeoGebra 기하 (4) - 선분을 n 배 늘이는 방법파일 다운로드1
11573정성태7/2/201818876Math: 26. GeoGebra 기하 (3) - 평행선
11572정성태7/1/201817891.NET Framework: 783. C# 컴파일러가 허용하지 않는 (유효한) 코드를 컴파일해 테스트하는 방법
11571정성태7/1/201819413.NET Framework: 782. C# - JIRA에 등록된 Project의 Version 항목 추가하는 방법파일 다운로드1
11570정성태7/1/201820138Math: 25. GeoGebra 기하 (2) - 임의의 선분과 특정 점을 지나는 수직선파일 다운로드1
11569정성태7/1/201818955Math: 24. GeoGebra 기하 (1) - 수직 이등분선파일 다운로드1
11568정성태7/1/201831132Math: 23. GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램 [1]
11567정성태6/28/201820835.NET Framework: 781. C# - OpenCvSharp 사용 시 포인터를 이용한 속도 향상파일 다운로드1
11566정성태6/28/201826377.NET Framework: 780. C# - JIRA REST API 사용 정리 (1) Basic 인증 [4]파일 다운로드1
11565정성태6/28/201823554.NET Framework: 779. C# 7.3에서 enum을 boxing 없이 int로 변환하기 - 세 번째 이야기파일 다운로드1
... 91  92  93  94  [95]  96  97  98  99  100  101  102  103  104  105  ...