Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24287
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13667정성태7/7/20246623닷넷: 2273. C# - 리눅스 환경에서의 Hyper-V Socket 연동 (AF_VSOCK)파일 다운로드1
13666정성태7/7/20247702Linux: 74. C++ - Vsock 예제 (Hyper-V Socket 연동)파일 다운로드1
13665정성태7/6/20247887Linux: 73. Linux 측의 socat을 이용한 Hyper-V 호스트와의 vsock 테스트파일 다운로드1
13663정성태7/5/20247498닷넷: 2272. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)의 VMID Wildcards 유형파일 다운로드1
13662정성태7/4/20247494닷넷: 2271. C# - WSL 2 VM의 VM ID를 알아내는 방법 - Host Compute System API파일 다운로드1
13661정성태7/3/20247414Linux: 72. g++ - 다른 버전의 GLIBC로 소스코드 빌드
13660정성태7/3/20247526오류 유형: 912. Visual C++ - Linux 프로젝트 빌드 오류
13659정성태7/1/20247864개발 환경 구성: 715. Windows - WSL 2 환경의 Docker Desktop 네트워크
13658정성태6/28/20248249개발 환경 구성: 714. WSL 2 인스턴스와 호스트 측의 Hyper-V에 운영 중인 VM과 네트워크 연결을 하는 방법 - 두 번째 이야기
13657정성태6/27/20247922닷넷: 2270. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)을 위한 EndPoint 사용자 정의
13656정성태6/27/20248106Windows: 264. WSL 2 VM의 swap 파일 위치
13655정성태6/24/20247863닷넷: 2269. C# - Win32 Resource 포맷 해석파일 다운로드1
13654정성태6/24/20247789오류 유형: 911. shutdown - The entered computer name is not valid or remote shutdown is not supported on the target computer.
13653정성태6/22/20247938닷넷: 2268. C# 코드에서 MAKEINTREOURCE 매크로 처리
13652정성태6/21/20249257닷넷: 2267. C# - Linux 환경에서 (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드2
13651정성태6/19/20248490닷넷: 2266. C# - (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드1
13650정성태6/18/20248410개발 환경 구성: 713. "WSL --debug-shell"로 살펴보는 WSL 2 VM의 리눅스 환경
13649정성태6/18/20247971오류 유형: 910. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter" (2)
13648정성태6/17/20248293오류 유형: 909. C# - DynamicMethod 사용 시 System.TypeAccessException
13647정성태6/16/20249345개발 환경 구성: 712. Windows - WSL 2의 네트워크 통신 방법 - 세 번째 이야기 (같은 IP를 공유하는 WSL 2 인스턴스) [1]
13646정성태6/14/20247765오류 유형: 908. Process Explorer - "Error configuring dump resources: The system cannot find the file specified."
13645정성태6/13/20248207개발 환경 구성: 711. Visual Studio로 개발 시 기본 등록하는 dev tag 이미지로 Docker Desktop k8s에서 실행하는 방법
13644정성태6/12/20248868닷넷: 2265. C# - System.Text.Json의 기본적인 (한글 등에서의) escape 처리 [1]
13643정성태6/12/20248331오류 유형: 907. MySqlConnector 사용 시 System.IO.FileLoadException 오류
13642정성태6/11/20248204스크립트: 65. 파이썬 - asgi 버전(2, 3)에 따라 달라지는 uvicorn 호스팅
13641정성태6/11/20248674Linux: 71. Ubuntu 20.04를 22.04로 업데이트
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...