Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18635
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  83  84  85  86  87  88  [89]  90  ...
NoWriterDateCnt.TitleFile(s)
11711정성태10/2/201823198오류 유형: 490. 윈도우 라이선스 키 입력 오류 0xc004f050, 0xc004e028
11710정성태10/2/201822123.NET Framework: 794. C# - 같은 모양, 다른 값의 한글 자음을 비교하는 호환 분해 [5]
11709정성태9/30/201820506개발 환경 구성: 402. .NET Core 콘솔 응용 프로그램을 docker로 실행/디버깅하는 방법 [1]
11708정성태9/30/201822742개발 환경 구성: 401. .NET Core 콘솔 응용 프로그램을 배포(publish) 시 docker image 자동 생성 [2]파일 다운로드1
11707정성태9/30/201824090오류 유형: 489. ASP.NET Core를 docker에서 실행 시 "Failed with a critical error." 오류 발생 [1]
11706정성태9/29/201820171개발 환경 구성: 400. Synology NAS(DS216+II)에서 실행한 gcc의 Segmentation fault [2]
11705정성태9/29/201820990개발 환경 구성: 399. Synology NAS(DS216+II)에 gcc 컴파일러 설치
11704정성태9/29/201824990기타: 73. Synology NAS 신호음(beep) 끄기 [1]파일 다운로드1
11703정성태9/27/201819766개발 환경 구성: 398. Blazor 환경 구성 후 빌드 속도가 너무 느리다면? [2]
11702정성태9/26/201816981사물인터넷: 44. 넷두이노(Netduino)의 네트워크 설정 방법
11701정성태9/26/201822737개발 환경 구성: 397. 공유기를 일반 허브로 활용하는 방법파일 다운로드1
11700정성태9/21/201820774Graphics: 25. Unity - shader의 직교 투영(Orthographic projection) 행렬(UNITY_MATRIX_P)을 수작업으로 구성
11699정성태9/21/201819344오류 유형: 488. Add-AzureAccount 실행 시 "No subscriptions are associated with the logged in account in Azure Service Management (RDFE)." 오류
11698정성태9/21/201820640오류 유형: 487. 윈도우 성능 데이터를 원격 SQL에 저장하는 경우 "Call to SQLAllocConnect failed with %1." 오류 발생
11697정성태9/20/201819463Graphics: 24. Unity - unity_CameraWorldClipPlanes 내장 변수 의미
11696정성태9/19/201820427.NET Framework: 793. C# - REST API를 이용해 NuGet 저장소 제어파일 다운로드1
11695정성태9/19/201825627Graphics: 23. Unity - shader의 원근 투영(Perspective projection) 행렬(UNITY_MATRIX_P)을 수작업으로 구성
11694정성태9/17/201819799오류 유형: 486. nuget push 호출 시 405 Method Not Allowed 오류 발생
11693정성태9/16/201822897VS.NET IDE: 128. Unity - shader 코드 디버깅 방법
11692정성태9/13/201823212Graphics: 22. Unity - shader의 Camera matrix(UNITY_MATRIX_V)를 수작업으로 구성
11691정성태9/13/201820128VS.NET IDE: 127. Visual C++ / x64 환경에서 inline-assembly를 매크로 어셈블리로 대체하는 방법 - 두 번째 이야기
11690정성태9/13/201823112사물인터넷: 43. 555 타이머의 단안정 모드파일 다운로드1
11689정성태9/13/201822373VS.NET IDE: 126. 디컴파일된 소스에 탐색을 사용하도록 설정(Enable navigation to decompiled sources)
11688정성태9/11/201817723오류 유형: 485. iisreset - The data is invalid. (2147942413, 8007000d) 오류 발생
11687정성태9/11/201819710사물인터넷: 42. 사물인터넷 - 트랜지스터 다중 전압 테스트파일 다운로드1
11686정성태9/8/201818736사물인터넷: 41. 다중 전원의 소스를 가진 회로파일 다운로드1
... 76  77  78  79  80  81  82  83  84  85  86  87  88  [89]  90  ...