Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18490
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [91]  92  93  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11657정성태8/18/201819901사물인터넷: 30. 릴레이(Relay) 제어파일 다운로드3
11656정성태8/16/201815682사물인터넷: 29. 트랜지스터와 병렬로 연결한 LED파일 다운로드1
11655정성태8/16/201817940사물인터넷: 28. 저항과 병렬로 연결한 LED파일 다운로드1
11654정성태8/15/201819197사물인터넷: 27. 병렬 회로의 저항, 전압 및 전류파일 다운로드1
11653정성태8/14/201820042사물인터넷: 26. 입력 전압에 따른 LED의 전압/저항 변화 [1]파일 다운로드1
11652정성태8/14/201817469사물인터넷: 25. 컬렉터 9V, 베이스에 5V와 3.3V 전압으로 테스트하는 C1815 트랜지스터파일 다운로드1
11651정성태8/14/201822598사물인터넷: 24. 9V 전압에서 테스트하는 C1815 트랜지스터 [1]파일 다운로드3
11650정성태8/14/201817005사물인터넷: 23. 가변저항으로 분압파일 다운로드1
11649정성태8/12/201819330사물인터넷: 22. 저항에 따른 전류 테스트파일 다운로드1
11648정성태8/12/201820756사물인터넷: 21. 퓨즈를 이용한 회로 보호파일 다운로드3
11647정성태8/8/201820887오류 유형: 476. 음수의 음수는 여전히 음수가 되는 수(절대값이 음수인 수)
11646정성태8/8/201816915오류 유형: 475. gacutil.exe 실행 시 "Failure initializing gacutil" 오류 발생
11645정성태8/8/201819125오류 유형: 474. 닷넷 COM+ - Failed to load the runtime. [1]
11644정성태8/6/201822028디버깅 기술: 118. windbg - 닷넷 개발자를 위한 MEX Debugging Extension 소개
11643정성태8/6/201821630사물인터넷: 20. 아두이노 레오나르도 R3 호환 보드의 3.3v 핀의 LED 전압/전류 테스트 [1]파일 다운로드1
11642정성태8/3/201820460Graphics: 20. Unity - LightMode의 ForwardBase에 따른 _WorldSpaceLightPos0 값 변화
11641정성태8/3/201825983Graphics: 19. Unity로 실습하는 Shader (10) - 빌보드 구현 [1]파일 다운로드1
11640정성태8/3/201822140Graphics: 18. Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법파일 다운로드1
11639정성태8/2/201819719디버깅 기술: 117. windbg - 덤프 파일로부터 추출한 DLL을 참조하는 방법
11638정성태8/2/201818112오류 유형: 473. windbg - 덤프 파일로부터 추출한 DLL 참조 시 "Resolved file has a bad image, no metadata, or is otherwise inaccessible." 빌드 오류
11637정성태8/1/201822519Graphics: 17. Unity - World matrix(unity_ObjectToWorld)로부터 TRS(이동/회전/크기) 행렬로 복원하는 방법파일 다운로드1
11636정성태8/1/201829922Graphics: 16. 3D 공간에서 두 점이 이루는 각도 구하기파일 다운로드1
11635정성태8/1/201818634오류 유형: 472. C# 컴파일 오류 - Your project is not referencing the ".NETFramework,Version=v3.5" framework.
11634정성태8/1/201821584.NET Framework: 790. .NET Thread 상태가 Cooperative일 때 GC hang 현상 재현 방법파일 다운로드1
11633정성태7/29/201825518Graphics: 15. Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성 [2]파일 다운로드1
11632정성태7/28/201827830Graphics: 14. C# - Unity에서 캐릭터가 바라보는 방향을 기준으로 카메라의 위치 이동 및 회전하는 방법
... [91]  92  93  94  95  96  97  98  99  100  101  102  103  104  105  ...