Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18495
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  83  84  85  86  87  88  89  [90]  ...
NoWriterDateCnt.TitleFile(s)
11682정성태9/5/201817640오류 유형: 484. Fakes를 포함한 단위 테스트 프로젝트를 빌드 시 CS1729 관련 오류 발생
11681정성태9/5/201820339Windows: 149. 다른 컴퓨터의 윈도우 이벤트 로그를 구독하는 방법 [2]
11680정성태9/2/201822507Graphics: 21. shader - _Time 내장 변수를 이용한 UV 변동 효과파일 다운로드1
11679정성태8/30/201820519.NET Framework: 792. C# COM 서버가 제공하는 COM 이벤트를 C++에서 받는 방법 [1]파일 다운로드1
11678정성태8/29/201818926오류 유형: 483. 닷넷 - System.InvalidProgramException [1]
11677정성태8/29/201816704오류 유형: 482. TFS - Could not find a part of the path '...\packages\Microsoft.AspNet.WebApi.5.2.5\.signature.p7s'.
11676정성태8/29/201827522.NET Framework: 791. C# - ElasticSearch를 위한 Client 라이브러리 제작 [1]파일 다운로드1
11675정성태8/29/201817731오류 유형: 481. The located assembly's manifest definition does not match the assembly reference.
11674정성태8/29/201819706Phone: 12. Xamarin - 기존 리모컨 기능을 핸드폰의 적외선 송신으로 구현파일 다운로드1
11673정성태8/28/201816970오류 유형: 480. Fritzing 실행 시 Ordinal Not Found 오류
11672정성태8/28/201817395오류 유형: 479. 윈도우 - 시스템 설정에서 도메인 참가를 위한 "Change" 버튼이 비활성화된 경우
11671정성태8/28/201823789사물인터넷: 39. 아두이노에서 적외선 송신기 기본 사용법파일 다운로드1
11670정성태8/28/201822030사물인터넷: 38. 아두이노에서 적외선 수신기 기본 사용법 [1]파일 다운로드1
11669정성태8/24/201820792개발 환경 구성: 394. 윈도우 환경에서 elasticsearch의 한글 블로그 검색 인덱스 구성
11668정성태8/24/201831825오류 유형: 478. 윈도우 업데이트(KB4458842) 이후 SQL Server 서비스 시작 오류
11667정성태8/24/201818616오류 유형: 477. "Use Unicode UTF-8 for worldwide language support" 옵션 설정 시 SQL Server 2016 설치 오류 [1]
11666정성태8/22/201818521사물인터넷: 37. 아두이노 - 코딩으로 대신하는 오실레이터 회로의 소리 출력파일 다운로드1
11665정성태8/22/201821213사물인터넷: 36. 오실레이터 회로 동작을 아두이노의 코딩으로 구현하는 방법파일 다운로드1
11664정성태8/22/201820826개발 환경 구성: 393. 윈도우 환경에서 elasticsearch의 한글 형태소 분석기 설치 [1]
11663정성태8/22/201823548개발 환경 구성: 392. 윈도우 환경에서 curl.exe를 이용한 elasticsearch 6.x 기본 사용법
11662정성태8/21/201817232사물인터넷: 35. 병렬 회로에서의 커패시터파일 다운로드1
11661정성태8/21/201819542사물인터넷: 34. 트랜지스터 동작 - 컬렉터-이미터 간의 저항 측정파일 다운로드1
11660정성태8/19/201818617사물인터넷: 33. 세라믹 커패시터의 동작 방식파일 다운로드1
11659정성태8/19/201818406사물인터넷: 32. 9V 전압에서 테스트하는 PN2222A 트랜지스터파일 다운로드1
11658정성태8/18/201821904사물인터넷: 31. 커패시터와 RC 회로파일 다운로드3
11657정성태8/18/201819906사물인터넷: 30. 릴레이(Relay) 제어파일 다운로드3
... 76  77  78  79  80  81  82  83  84  85  86  87  88  89  [90]  ...