Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 21083
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  [3]  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13904정성태3/25/20253177디버깅 기술: 218. Windbg로 살펴보는 Win32 Critical Section파일 다운로드1
13903정성태3/24/20252362VS.NET IDE: 197. (OneDrive, Dropbox 등의 공유 디렉터리에 있는) C++ 프로젝트의 출력 경로 변경하기
13902정성태3/24/20252860개발 환경 구성: 742. Oracle - 테스트용 hr 계정 및 데이터 생성파일 다운로드1
13901정성태3/9/20253196Windows: 280. Hyper-V의 3가지 Thread Scheduler (Classic, Core, Root)
13900정성태3/8/20253966스크립트: 72. 파이썬 - SQLAlchemy + oracledb 연동
13899정성태3/7/20252540스크립트: 71. 파이썬 - asyncio의 ContextVar 전달
13898정성태3/5/20253359오류 유형: 948. Visual Studio - Proxy Authentication Required: dotnetfeed.blob.core.windows.net
13897정성태3/5/20254290닷넷: 2326. C# - PowerShell과 연동하는 방법 (두 번째 이야기)파일 다운로드1
13896정성태3/5/20254094Windows: 279. Hyper-V Manager - VM 목록의 CPU Usage 항목이 항상 0%로 나오는 문제
13895정성태3/4/20254030Linux: 117. eBPF / bpf2go - Map에 추가된 요소의 개수를 확인하는 방법
13894정성태2/28/20253877Linux: 116. eBPF / bpf2go - BTF Style Maps 정의 구문과 데이터 정렬 문제
13893정성태2/27/20253385Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법
13892정성태2/24/20254786닷넷: 2325. C# - PowerShell과 연동하는 방법파일 다운로드1
13891정성태2/23/20253552닷넷: 2324. C# - 프로세스의 성능 카운터용 인스턴스 이름을 구하는 방법파일 다운로드1
13890정성태2/21/20253322닷넷: 2323. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(Win32 API)파일 다운로드1
13889정성태2/20/20254699닷넷: 2322. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(성능 카운터, WMI) [1]파일 다운로드1
13888정성태2/17/20253786닷넷: 2321. Blazor에서 발생할 수 있는 async void 메서드의 부작용
13887정성태2/17/20254844닷넷: 2320. Blazor의 razor 페이지에서 code-behind 파일로 코드를 분리 및 DI 사용법
13886정성태2/15/20253661VS.NET IDE: 196. Visual Studio - Code-behind처럼 cs 파일을 그룹핑하는 방법
13885정성태2/14/20254759닷넷: 2319. ASP.NET Core Web API / Razor 페이지에서 발생할 수 있는 async void 메서드의 부작용
13884정성태2/13/20255169닷넷: 2318. C# - (async Task가 아닌) async void 사용 시의 부작용파일 다운로드1
13883정성태2/12/20254863닷넷: 2317. C# - Memory Mapped I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
13882정성태2/10/20253644스크립트: 70. 파이썬 - oracledb 패키지 연동 시 Thin / Thick 모드
13881정성태2/7/20254026닷넷: 2316. C# - Port I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
13880정성태2/5/20255290오류 유형: 947. sshd - Failed to start OpenSSH server daemon.
13879정성태2/5/20255324오류 유형: 946. Ubuntu - N: Updating from such a repository can't be done securely, and is therefore disabled by default.
1  2  [3]  4  5  6  7  8  9  10  11  12  13  14  15  ...