Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 21079
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  [9]  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13754정성태10/4/20246773닷넷: 2304. C# 13 - (8) 부분 메서드 정의를 속성 및 인덱서에도 확대파일 다운로드1
13753정성태10/4/20246432Linux: 81. Linux - PATH 환경변수의 적용 규칙
13752정성태10/2/20247640닷넷: 2303. C# 13 - (7) ref struct의 interface 상속 및 제네릭 제약으로 사용 가능 [6]파일 다운로드1
13751정성태10/2/20246208C/C++: 176. C/C++ - ARM64로 포팅할 때 유의할 점
13750정성태10/1/20246056C/C++: 175. C++ - WinMain/wWinMain 호출 전의 CRT 초기화 단계
13749정성태9/30/20246219닷넷: 2302. C# - ssh-keygen으로 생성한 Private Key와 Public Key 연동파일 다운로드1
13748정성태9/29/20246664닷넷: 2301. C# - BigInteger 타입이 byte 배열로 직렬화하는 방식
13747정성태9/28/20247326닷넷: 2300. C# - OpenSSH의 공개키 파일에 대한 "BEGIN OPENSSH PUBLIC KEY" / "END OPENSSH PUBLIC KEY" PEM 포맷파일 다운로드1
13746정성태9/28/20246507오류 유형: 924. Python - LocalProtocolError("Illegal header value ...")
13745정성태9/28/20246372Linux: 80. 리눅스 - 실행 중인 프로세스 내부의 환경변수 설정을 구하는 방법 (lldb)
13744정성태9/27/20246881닷넷: 2299. C# - Windows Hello 사용자 인증 다이얼로그 표시하기파일 다운로드1
13743정성태9/26/20247558닷넷: 2298. C# - Console 프로젝트에서의 await 대상으로 Main 스레드 활용하는 방법 [1]
13742정성태9/26/20247596닷넷: 2297. C# - ssh-keygen으로 생성한 ecdsa 유형의 Public Key 파일 해석 [1]파일 다운로드1
13741정성태9/25/20246931디버깅 기술: 202. windbg - ASP.NET MVC Web Application (.NET Framework) 응용 프로그램의 덤프 분석 시 요령
13740정성태9/24/20246557기타: 86. RSA 공개키 등의 modulus 값에 0x00 선행 바이트가 있는 이유(ASN.1 인코딩)
13739정성태9/24/20246837닷넷: 2297. C# - ssh-keygen으로 생성한 Public Key 파일 해석과 fingerprint 값(md5, sha256) 생성 [1]파일 다운로드1
13738정성태9/22/20246524C/C++: 174. C/C++ - 윈도우 운영체제에서의 file descriptor, FILE*파일 다운로드1
13737정성태9/21/20247033개발 환경 구성: 727. Visual C++ - 리눅스 프로젝트를 위한 빌드 서버의 msbuild 구성
13736정성태9/20/20247056오류 유형: 923. Visual Studio Code - Could not establish connection to "...": Port forwarding is disabled.
13735정성태9/20/20246801개발 환경 구성: 726. ARM 플랫폼용 Visual C++ 리눅스 프로젝트 빌드
13734정성태9/19/20246466개발 환경 구성: 725. ssh를 이용한 원격 docker 서비스 사용
13733정성태9/19/20246974VS.NET IDE: 194. Visual Studio - Cross Platform / "Authentication Type: Private Key"로 접속하는 방법
13732정성태9/17/20247123개발 환경 구성: 724. ARM + docker 환경에서 .NET 8 설치
13731정성태9/15/20247639개발 환경 구성: 723. C# / Visual C++ - Control Flow Guard (CFG) 활성화 [1]파일 다운로드2
13730정성태9/10/20248015오류 유형: 922. docker - RULE_APPEND failed (No such file or directory): rule in chain DOCKER
13729정성태9/9/20248879C/C++: 173. Windows / C++ - AllocConsole로 할당한 콘솔과 CRT 함수 연동 [1]파일 다운로드1
1  2  3  4  5  6  7  8  [9]  10  11  12  13  14  15  ...