Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 19933
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 16  17  18  19  20  21  22  23  24  25  26  27  28  29  [30]  ...
NoWriterDateCnt.TitleFile(s)
13193정성태12/14/202213714오류 유형: 832. error C7681: two-phase name lookup is not supported for C++/CLI or C++/CX; use /Zc:twoPhase-
13192정성태12/13/202213728Linux: 55. 리눅스 - bash shell에서 실수 연산
13191정성태12/11/202215505.NET Framework: 2077. C# - 직접 만들어 보는 SynchronizationContext파일 다운로드1
13190정성태12/9/202217153.NET Framework: 2076. C# - SynchronizationContext 기본 사용법파일 다운로드1
13189정성태12/9/202217128오류 유형: 831. Visual Studio - Windows Forms 디자이너의 도구 상자에 컨트롤이 보이지 않는 문제
13188정성태12/9/202215695.NET Framework: 2075. C# - 직접 만들어 보는 TaskScheduler 실습 (SingleThreadTaskScheduler)파일 다운로드1
13187정성태12/8/202215525개발 환경 구성: 654. openssl - CA로부터 인증받은 새로운 인증서를 생성하는 방법 (2)
13186정성태12/6/202213451오류 유형: 831. The framework 'Microsoft.AspNetCore.App', version '...' was not found.
13185정성태12/6/202214327개발 환경 구성: 653. Windows 환경에서의 Hello World x64 어셈블리 예제 (NASM 버전)
13184정성태12/5/202212871개발 환경 구성: 652. ml64.exe와 link.exe x64 실행 환경 구성 [1]
13183정성태12/4/202212704오류 유형: 830. MASM + CRT 함수를 사용하는 경우 발생하는 컴파일 오류 정리 [1]
13182정성태12/4/202214467Windows: 217. Windows 환경에서의 Hello World x64 어셈블리 예제 (MASM 버전)
13181정성태12/3/202213027Linux: 54. 리눅스/WSL - hello world 어셈블리 코드 x86/x64 (nasm)
13180정성태12/2/202213914.NET Framework: 2074. C# - 스택 메모리에 대한 여유 공간 확인하는 방법파일 다운로드1
13179정성태12/2/202212531Windows: 216. Windows 11 - 22H2 업데이트 이후 Terminal 대신 cmd 창이 뜨는 경우
13178정성태12/1/202213679Windows: 215. Win32 API 금지된 함수 - IsBadXxxPtr 유의 함수들이 안전하지 않은 이유파일 다운로드1
13177정성태11/30/202214209오류 유형: 829. uwsgi 설치 시 fatal error: Python.h: No such file or directory
13176정성태11/29/202211753오류 유형: 828. gunicorn - ModuleNotFoundError: No module named 'flask'
13175정성태11/29/202216082오류 유형: 827. Python - ImportError: cannot import name 'html5lib' from 'pip._vendor'
13174정성태11/28/202212792.NET Framework: 2073. C# - VMMap처럼 스택 메모리의 reserve/guard/commit 상태 출력파일 다운로드1
13173정성태11/27/202213638.NET Framework: 2072. 닷넷 응용 프로그램의 스레드 스택 크기 변경
13172정성태11/25/202213190.NET Framework: 2071. 닷넷에서 ESP/RSP 레지스터 값을 구하는 방법파일 다운로드1
13171정성태11/25/202212649Windows: 214. 윈도우 - 스레드 스택의 "red zone"
13170정성태11/24/202213704Windows: 213. 윈도우 - 싱글 스레드는 컨텍스트 스위칭이 없을까요?
13169정성태11/23/202214946Windows: 212. 윈도우의 Protected Process (Light) 보안 [1]파일 다운로드2
13168정성태11/22/202212769제니퍼 .NET: 31. 제니퍼 닷넷 적용 사례 (9) - DB 서비스에 부하가 걸렸다?!
... 16  17  18  19  20  21  22  23  24  25  26  27  28  29  [30]  ...