Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 19896
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 31  32  33  34  35  36  37  38  39  [40]  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
12942정성태1/27/202216407.NET Framework: 1141. XmlSerializer와 Dictionary 타입파일 다운로드1
12941정성태1/26/202217604오류 유형: 790. AKS/k8s - pod 상태가 Pending으로 지속되는 경우
12940정성태1/26/202214041오류 유형: 789. AKS에서 hpa에 따른 autoscale 기능이 동작하지 않는다면?
12939정성태1/25/202215170.NET Framework: 1140. C# - ffmpeg(FFmpeg.AutoGen)를 이용해 MP3 오디오 파일 인코딩/디코딩하는 예제파일 다운로드1
12938정성태1/24/202218392개발 환경 구성: 633. Docker Desktop + k8s 환경에서 local 이미지를 사용하는 방법
12937정성태1/24/202216119.NET Framework: 1139. C# - ffmpeg(FFmpeg.AutoGen)를 이용해 오디오(mp2) 인코딩하는 예제(encode_audio.c) [2]파일 다운로드1
12936정성태1/22/202215566.NET Framework: 1138. C# - ffmpeg(FFmpeg.AutoGen)를 이용해 멀티미디어 파일의 메타데이터를 보여주는 예제(metadata.c)파일 다운로드1
12935정성태1/22/202216265.NET Framework: 1137. ffmpeg의 파일 해시 예제(ffhash.c)를 C#으로 포팅파일 다운로드1
12934정성태1/22/202215699오류 유형: 788. Warning C6262 Function uses '65564' bytes of stack: exceeds /analyze:stacksize '16384'. Consider moving some data to heap. [2]
12933정성태1/21/202216108.NET Framework: 1136. C# - ffmpeg(FFmpeg.AutoGen)를 이용해 MP2 오디오 파일 디코딩 예제(decode_audio.c)파일 다운로드1
12932정성태1/20/202217260.NET Framework: 1135. C# - ffmpeg(FFmpeg.AutoGen)로 하드웨어 가속기를 이용한 비디오 디코딩 예제(hw_decode.c) [2]파일 다운로드1
12931정성태1/20/202213738개발 환경 구성: 632. ASP.NET Core 프로젝트를 AKS/k8s에 올리는 과정
12930정성태1/19/202214992개발 환경 구성: 631. AKS/k8s의 Volume에 파일 복사하는 방법
12929정성태1/19/202215028개발 환경 구성: 630. AKS/k8s의 Pod에 Volume 연결하는 방법
12928정성태1/18/202214764개발 환경 구성: 629. AKS/Kubernetes에서 호스팅 중인 pod에 shell(/bin/bash)로 진입하는 방법
12927정성태1/18/202215490개발 환경 구성: 628. AKS 환경에 응용 프로그램 배포 방법
12926정성태1/17/202215229오류 유형: 787. AKS - pod 배포 시 ErrImagePull/ImagePullBackOff 오류
12925정성태1/17/202215979개발 환경 구성: 627. AKS의 준비 단계 - ACR(Azure Container Registry)에 docker 이미지 배포
12924정성태1/15/202217404.NET Framework: 1134. C# - ffmpeg(FFmpeg.AutoGen)를 이용한 비디오 디코딩 예제(decode_video.c) [2]파일 다운로드1
12923정성태1/15/202216242개발 환경 구성: 626. ffmpeg.exe를 사용해 비디오 파일을 MPEG1 포맷으로 변경하는 방법
12922정성태1/14/202215041개발 환경 구성: 625. AKS - Azure Kubernetes Service 생성 및 SLO/SLA 변경 방법
12921정성태1/14/202212670개발 환경 구성: 624. Docker Desktop에서 별도 서버에 설치한 docker registry에 이미지 올리는 방법
12920정성태1/14/202213976오류 유형: 786. Camtasia - An error occurred with the camera: Failed to Add Video Sampler.
12919정성태1/13/202213550Windows: 199. Host Network Service (HNS)에 의해서 점유되는 포트
12918정성태1/13/202214035Linux: 47. WSL - shell script에서 설정한 환경 변수가 스크립트 실행 후 반영되지 않는 문제
12917정성태1/12/202213245오류 유형: 785. C# - The type or namespace name '...' could not be found (are you missing a using directive or an assembly reference?)
... 31  32  33  34  35  36  37  38  39  [40]  41  42  43  44  45  ...