Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 19033
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  100  101  102  103  [104]  105  ...
NoWriterDateCnt.TitleFile(s)
11324정성태10/13/201720821디버깅 기술: 101. windbg - "*** WARNING: Unable to verify checksum for" 경고 없애는 방법
11322정성태10/13/201718247디버깅 기술: 100. windbg - .NET 4.0 응용 프로그램의 Main 메서드에 Breakpoint 걸기
11321정성태10/11/201719769.NET Framework: 688. NGen 모듈과 .NET Profiler
11320정성태10/11/201720545.NET Framework: 687. COR_PRF_USE_PROFILE_IMAGES 옵션과 NGen의 "profiler-enhanced images" [1]
11319정성태10/11/201728150.NET Framework: 686. C# - string 배열을 담은 구조체를 직렬화하는 방법
11318정성태10/7/201720911VS.NET IDE: 122. 비주얼 스튜디오에서 관리자 권한을 요구하는 C# 콘솔 프로그램 제작 [1]
11317정성태10/4/201726072VC++: 120. std::copy 등의 함수 사용 시 _SCL_SECURE_NO_WARNINGS 에러 발생
11316정성태9/30/201724126디버깅 기술: 99. (닷넷) 프로세스(EXE)에 디버거가 연결되어 있는지 아는 방법 [4]
11315정성태9/29/201740206기타: 68. "시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지" 구매하신 분들을 위한 C# 7.0/7.1 추가 문법 PDF [8]
11314정성태9/28/201721968디버깅 기술: 98. windbg - 덤프 파일로부터 닷넷 버전 확인하는 방법
11313정성태9/25/201719281디버깅 기술: 97. windbg - 메모리 덤프로부터 DateTime 형식의 값을 알아내는 방법파일 다운로드1
11312정성태9/25/201722306.NET Framework: 685. C# - 구조체(값 형식)의 필드를 리플렉션을 이용해 값을 바꾸는 방법파일 다운로드1
11311정성태9/20/201716823.NET Framework: 684. System.Diagnostics.Process 객체의 명시적인 해제 권장
11310정성태9/19/201720231.NET Framework: 683. WPF의 Window 객체를 생성했는데 GC 수집 대상이 안 되는 이유 [3]
11309정성태9/13/201718364개발 환경 구성: 335. Octave의 명령 창에서 실행한 결과를 복사하는 방법
11308정성태9/13/201719410VS.NET IDE: 121. 비주얼 스튜디오에서 일부 텍스트 파일을 무조건 메모장으로만 여는 문제파일 다운로드1
11307정성태9/13/201721919오류 유형: 421. System.Runtime.InteropServices.SEHException - 0x80004005
11306정성태9/12/201719967.NET Framework: 682. 아웃룩 사용자를 위한 중국어 스팸 필터 Add-in
11305정성태9/12/201721493개발 환경 구성: 334. 기존 프로젝트를 Visual Studio를 이용해 Github의 신규 생성된 repo에 올리는 방법 [1]
11304정성태9/11/201718630개발 환경 구성: 333. 3ds Max를 Hyper-V VM에서 실행하는 방법
11303정성태9/11/201721919개발 환경 구성: 332. Inno Setup 파일의 관리자 권한을 제거하는 방법
11302정성태9/11/201718139개발 환경 구성: 331. SQL Server Express를 위한 방화벽 설정
11301정성태9/11/201717047오류 유형: 420. SQL Server Express 연결 오류 - A network-related or instance-specific error occurred while establishing a connection to SQL Server.
11300정성태9/10/201720877.NET Framework: 681. dotnet.exe - run, exec, build, restore, publish 차이점 [3]
11299정성태9/9/201719634개발 환경 구성: 330. Hyper-V VM의 Internal Network를 Private 유형으로 만드는 방법
11298정성태9/8/201722897VC++: 119. EnumProcesses / EnumProcessModules API 사용 시 주의점 [1]
... 91  92  93  94  95  96  97  98  99  100  101  102  103  [104]  105  ...