Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 19029
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  [93]  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11608정성태7/15/201824892Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
11607정성태7/14/201825234Graphics: 2. Unity로 실습하는 Shader [1]
11606정성태7/13/201825882사물인터넷: 19. PC에 연결해 동작하는 자신만의 USB 장치 만들어 보기파일 다운로드1
11605정성태7/13/201821668사물인터넷: 18. New NodeMCU v3 아두이노 호환 보드의 내장 LED 및 입력 핀 사용법 [1]파일 다운로드1
11604정성태7/12/201820732Math: 47. GeoGebra 기하 (24) - 정다각형파일 다운로드1
11603정성태7/12/201816858Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근파일 다운로드1
11602정성태7/11/201817009Math: 45. GeoGebra 기하 (22) - 반전기하학의 원에 관한 반사변환파일 다운로드1
11601정성태7/11/201819813Math: 44. GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환파일 다운로드1
11600정성태7/10/201818231Math: 43. GeoGebra 기하 (20) - 세 점을 지나는 원파일 다운로드1
11599정성태7/10/201817538Math: 42. GeoGebra 기하 (19) - 두 원의 안과 밖으로 접하는 직선파일 다운로드1
11598정성태7/10/201819398Windows: 147. 시스템 복구 디스크를 USB 디스크에 만드는 방법
11597정성태7/10/201821512사물인터넷: 17. Thinary Electronic - ATmega328PB 아두이노 호환 보드의 개발 환경 구성
11596정성태7/10/201819464기타: 72. 과거의 용어 설명 - OWIN
11595정성태7/10/201825191사물인터넷: 16. New NodeMCU v3 아두이노 호환 보드의 기본 개발 환경 구성
11594정성태7/8/201819601Math: 41. GeoGebra 기하 (18) - 원의 중심 및 접선파일 다운로드1
11593정성태7/8/201818565Math: 40. GeoGebra 기하 (17) - 각의 복사파일 다운로드1
11591정성태7/7/201818000Math: 39. GeoGebra 기하 (16) - 삼각형의 방심과 방접원파일 다운로드1
11590정성태7/7/201817548Math: 38. GeoGebra 기하 (15) - 삼각형의 수심파일 다운로드1
11589정성태7/7/201817788.NET Framework: 787. object로 형변환된 인스턴스를 원래의 타입 인자로 제네릭 메서드를 호출하는 방법 [2]파일 다운로드1
11588정성태7/7/201819282디버깅 기술: 116. windbg 분석 사례 - ASP.NET 웹 응용 프로그램의 CPU 100% 현상 (3)
11587정성태7/5/201818859.NET Framework: 786. ASP.NET - HttpCookieCollection을 다중 스레드에서 사용할 경우 무한 루프 현상
11586정성태7/5/201818055Math: 37. GeoGebra 기하 (14) - 삼각형의 무게 중심파일 다운로드1
11585정성태7/5/201818221Math: 36. GeoGebra 기하 (13) - 삼각형의 외심과 외접하는 원파일 다운로드1
11584정성태7/5/201818211Math: 35. GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원파일 다운로드1
11583정성태7/5/201817988.NET Framework: 785. public으로 노출되지 않은 다른 어셈블리의 delegate 인스턴스를 Reflection으로 생성하는 방법파일 다운로드1
11582정성태7/5/201824625.NET Framework: 784. C# - 제네릭 인자를 가진 타입을 생성하는 방법 [1]파일 다운로드1
... 91  92  [93]  94  95  96  97  98  99  100  101  102  103  104  105  ...