Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 19023
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  [98]  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11482정성태4/10/201820364VC++: 126. CUDA Core 수를 알아내는 방법
11481정성태4/10/201831990개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
11480정성태4/9/201822008.NET Framework: 736. C# - API를 사용해 Azure에 접근하는 방법 [2]파일 다운로드1
11479정성태4/9/201817692.NET Framework: 735. Azure - PowerShell로 Access control(IAM)에 새로운 계정 만드는 방법
11478정성태11/8/201919907디버깅 기술: 115. windbg - 덤프 파일로부터 PID와 환경변수 등의 정보를 구하는 방법 [1]
11477정성태4/8/201817396오류 유형: 460. windbg - sos 명령어 수행 시 c0000006 오류 발생
11476정성태4/8/201818909디버깅 기술: 114. windbg - !threads 출력 결과로부터 닷넷 관리 스레드(System.Threading.Thread) 객체를 구하는 방법
11475정성태3/28/201821174디버깅 기술: 113. windbg - Thread.Suspend 호출 시 응용 프로그램 hang 현상에 대한 덤프 분석
11474정성태3/27/201819327오류 유형: 459. xperf: error: TEST.Event: Invalid flags. (0x3ec).
11473정성태3/22/201824533.NET Framework: 734. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상파일 다운로드2
11472정성태3/22/201818485개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
11471정성태3/20/201821897VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [1]파일 다운로드1
11470정성태3/20/201823903오류 유형: 458. Visual Studio - CUDA 프로젝트 빌드 시 오류 C1189, expression must have a constant value
11469정성태3/19/201816899오류 유형: 457. error MSB3103: Invalid Resx file. Could not load file or assembly 'System.Windows.Forms, ...' or one of its dependencies.
11468정성태3/19/201816465오류 유형: 456. 닷넷 응용 프로그램 실행 시 0x80131401 예외 발생
11467정성태3/19/201815993오류 유형: 455. Visual Studio Installer - 업데이트 실패
11466정성태3/18/201817084개발 환경 구성: 355. 한 대의 PC에서 2개 이상의 DirectX 게임을 실행하는 방법
11463정성태3/15/201819515.NET Framework: 733. 스레드 간의 read/write 시에도 lock이 필요 없는 경우파일 다운로드1
11462정성태3/14/201822336개발 환경 구성: 354. HTTPS 호출에 대한 TLS 설정 확인하는 방법 [1]
11461정성태3/13/201824934오류 유형: 454. 윈도우 업데이트 설치 오류 - 0x800705b4 [1]
11460정성태3/13/201817415디버깅 기술: 112. windbg - 닷넷 메모리 덤프에서 전역 객체의 내용을 조사하는 방법
11459정성태3/13/201818207오류 유형: 453. Debug Diagnostic Tool에서 mscordacwks.dll을 찾지 못하는 문제
11458정성태2/21/201819256오류 유형: 452. This share requires the obsolete SMB1 protocol, which is unsafe and could expose your system to attack. [1]
11457정성태2/17/201823957.NET Framework: 732. C# - Task.ContinueWith 설명 [1]파일 다운로드1
11456정성태2/17/201829680.NET Framework: 731. C# - await을 Task 타입이 아닌 사용자 정의 타입에 적용하는 방법 [7]파일 다운로드1
11455정성태2/17/201818599오류 유형: 451. ASP.NET Core - An error occurred during the compilation of a resource required to process this request.
... 91  92  93  94  95  96  97  [98]  99  100  101  102  103  104  105  ...