Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 17964
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  [153]  154  155  156  157  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1227정성태2/3/201229263.NET Framework: 299. 해당 어셈블리가 Debug 빌드인지, Release 빌드인지 알아내는 방법파일 다운로드1
1226정성태1/28/201270181.NET Framework: 298. 홀 펀칭(Hole Punching)을 이용한 Private IP 간 통신 - C# [15]파일 다운로드3
1225정성태1/24/201225789.NET Framework: 297. 특정 EXE 파일의 실행을 Internet Explorer처럼 "Protected Mode"로 실행하는 방법 [1]파일 다운로드1
1224정성태1/21/201237287개발 환경 구성: 139. 아마존 EC2에 새로 추가된 "1년 무료 Windows 서버 인스턴스"가 있다는데, 직접 만들어 볼까요? ^^ [11]
1223정성태1/20/201227301.NET Framework: 296. 괜찮은 문자열 해시함수? - 두 번째 이야기 [1]파일 다운로드1
1222정성태1/18/201235025.NET Framework: 295. 괜찮은 문자열 해시 함수? [4]파일 다운로드1
1221정성태1/17/201224012오류 유형: 147. System.Runtime.InteropServices.COMException (0x80005000)
1220정성태1/15/201224169.NET Framework: 294. Master web.config 파일을 수정하려면?파일 다운로드1
1219정성태1/15/201226569.NET Framework: 293. Microsoft PowerPoint 슬라이드를 HTML 파일로 ".files" 폴더 없이 저장하는 방법 (C# 코드)파일 다운로드1
1218정성태1/15/201239099.NET Framework: 292. RSACryptoServiceProvider의 공개키와 개인키 구분 [1]파일 다운로드2
1217정성태1/14/201241187.NET Framework: 291. .NET에서 WAV, MP3 파일 재생하는 방법 [1]파일 다운로드1
1216정성태1/14/201229898오류 유형: 146. Microsoft Visual C++ 재배포 패키지 - 설치 로그 남기는 방법 [1]
1215정성태1/9/201227461제니퍼 .NET: 20. 제니퍼 닷넷 적용 사례 (3) - '닷넷'이 문제일까? '닷넷 개발자'가 문제일까? [6]
1214정성태1/3/201224298제니퍼 .NET: 19. 제니퍼 닷넷 설치/제거 방법 - IIS
1213정성태12/31/201124224.NET Framework: 290. WCF - 접속된 클라이언트의 IP 주소 알아내는 방법 - 두 번째 이야기
1212정성태12/31/201124340오류 유형: 145. The trust relationship between this workstation and the primary domain failed.
1211정성태12/31/201129139.NET Framework: 289. WindowsFormsHost를 사용하는 XBAP 응용 프로그램파일 다운로드1
1210정성태12/30/201148109.NET Framework: 288. FFmpeg.exe를 이용한 C# 동영상 인코더 예제 [9]파일 다운로드1
1209정성태12/29/201122753개발 환경 구성: 138. BizTalk 2006 설치 방법
1208정성태12/28/201145724.NET Framework: 287. Excel Sheet를 WinForm에서 사용하는 방법 [8]파일 다운로드2
1207정성태12/26/201125001.NET Framework: 286. x86/x64로 구분된 코드를 포함하는 경우, 다중으로 어셈블리를 만들어야 할까요?파일 다운로드1
1206정성태12/25/201126017.NET Framework: 285. Shader 강좌와 함께 배워보는 XNA Framework (3) - 텍스처 매핑 예제파일 다운로드1
1205정성태12/25/201131703.NET Framework: 284. Thread 개체의 Interrupt와 Abort의 차이점파일 다운로드1
1204정성태12/22/201125202.NET Framework: 283. MEF를 ASP.NET에 성능 손실 없이 적용하려면? [7]
1203정성태12/21/201125570제니퍼 .NET: 18. MEF가 적용된 ASP.NET 웹 사이트를 제니퍼 닷넷으로 모니터링 해본 결과! [6]
1202정성태12/21/201125988오류 유형: 144. The database '...' cannot be opened because it is version 661.
... 151  152  [153]  154  155  156  157  158  159  160  161  162  163  164  165  ...