Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 17973
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  [157]  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1124정성태9/17/201126409.NET Framework: 240. System.Collections.ArrayList가 .NET 4.5에서 지원이 안된다??? [2]
1123정성태9/17/201165219Windows: 53. 2가지 모드의 Internet Explorer 10과 ActiveX [6]
1122정성태9/16/201132916Windows: 52. 새롭게 지원되는 WinRT 응용 프로그램 [7]
1121정성태9/12/201127665Java: 5. WTP 내에서 서블릿을 실행하는 환경
1120정성태9/11/201127593.NET Framework: 239. IHttpHandler.IsReusable 속성 이야기파일 다운로드1
1119정성태9/11/201126688Java: 4. 이클립스에 WTP SDK가 설치되지 않는다면? [2]
1118정성태9/11/201138331Java: 3. 이클립스에서 서블릿 디버깅하는 방법 [4]
1117정성태9/9/201125618제니퍼 .NET: 17. 제니퍼 닷넷 적용 사례 (2) - 웹 애플리케이션 hang의 원인을 알려주다.
1116정성태9/8/201156673Java: 2. 자바에서 "Microsoft SQL Server JDBC Driver" 사용하는 방법
1115정성태9/4/201130196Java: 1. 닷넷 개발자가 처음 실습해 본 서블릿
1114정성태9/4/201134724Math: 2. "Zhang Suen 알고리즘(세선화, Thinning/Skeletonization)"의 C# 버전 [4]파일 다운로드1
1113정성태9/2/201134283개발 환경 구성: 129. Hyper-V에 CentOS 설치하기
1112정성태9/2/201151050Linux: 1. 리눅스 <-> 윈도우 원격 접속 프로그램 사용 [3]
1111정성태8/29/201125438제니퍼 .NET: 16. 적용 사례 (1) - DB Connection Pooling을 사용하지 않았을 때의 성능 저하를 알려주다. [1]
1110정성태8/26/201126788오류 유형: 136. RDP 접속이 불연속적으로 끊기는 문제
1109정성태8/26/201129685오류 유형: 135. 어느 순간 Active Directory 접속이 안되는 문제
1108정성태8/22/201131173오류 유형: 134. OLE/COM Object Viewer - DllRegisterServer in IVIEWERS.DLL failed. [1]
1107정성태8/21/201128987디버깅 기술: 43. Windows Form의 Load 이벤트에서 발생하는 예외가 Visual Studio에서 잡히지 않는 문제
1106정성태8/20/201127279웹: 26. FailedRequestTracing 설정으로 인한 iisexpress.exe 비정상 종료 문제
1105정성태8/19/201127206.NET Framework: 238. Web Site Model 프로젝트에서 Trace.WriteLine 출력이 dbgview.exe에서 확인이 안 되는 문제파일 다운로드1
1104정성태8/19/201127411웹: 25. WebDev보다 IIS Express가 더 나은 점 - 다중 가상 디렉터리 매핑 [1]
1103정성태8/19/201133311오류 유형: 133. WCF 포트 바인딩 실패 오류 - TCP error(10013) [1]
1102정성태8/19/201131031Math: 1. 방탈출3 - Room 10의 '중복가능한 조합' 문제를 위한 C# 프로그래밍 [2]파일 다운로드1
1101정성태8/19/201129686.NET Framework: 237. WCF AJAX 서비스와 JavaScript 간의 DateTime 연동 [1]파일 다운로드1
1100정성태8/17/201128793.NET Framework: 236. SqlDbType - DateTime, DateTime2, DateTimeOffset의 차이점파일 다운로드1
1099정성태8/15/201128236오류 유형: 132. 어느 순간 갑자기 접속이 안 되는 TFS 서버
... 151  152  153  154  155  156  [157]  158  159  160  161  162  163  164  165  ...