Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 17884
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  [100]  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11432정성태1/11/201826292.NET Framework: 726. WPF + Direct2D + SharpDX 출력 C# 예제파일 다운로드2
11431정성태1/11/201824273.NET Framework: 725. C# - 동기 방식이면서 비동기 메서드(awaitable)처럼 구현한 사례 [9]
11430정성태1/10/201827731.NET Framework: 724. WPF + Direct2D 출력 C# 예제 [2]파일 다운로드1
11429정성태1/9/201818465개발 환경 구성: 348. ASP.NET Core 2.1 Preview 버전 적용 방법
11428정성태1/6/201821244개발 환경 구성: 347. WinForm 프로젝트를 WPF 프로젝트 유형으로 변경하는 방법파일 다운로드1
11427정성태1/5/201819261오류 유형: 445. vcpkg 빌드 오류 - Starting the CLR failed with HRESULT 80040153
11426정성태1/5/201828927오류 유형: 444. curl로 호출할 때 발생하는 오류 정리
11425정성태1/4/201819539개발 환경 구성: 346. ASP.NET Core Web Application을 IIS에서 호스팅하는 방법 (2)
11424정성태1/4/201819103개발 환경 구성: 345. ASP.NET Core 프로젝트를 명령행에서 빌드하는 방법
11423정성태1/3/201837344VC++: 123. 내가 만든 코드보다 OpenCV의 속도가 월등히 빠른 이유 [8]파일 다운로드2
11422정성태1/2/201827952.NET Framework: 723. C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산) [4]파일 다운로드1
11421정성태1/2/201819721오류 유형: 443. Visual Studio - nuget configuration is invalid
11420정성태12/30/201723887.NET Framework: 722. C# - Windows 10 운영체제의 데스크톱 앱에서 음성인식(SpeechRecognizer) 사용하는 방법 [3]파일 다운로드1
11419정성태12/23/201726016.NET Framework: 721. WebClient 타입의 ...Async 메서드 호출은 왜 await + 동기 호출 시 hang 현상이 발생할까요? [2]파일 다운로드1
11418정성태12/23/201735781.NET Framework: 720. 비동기 메서드 내에서 await 시 ConfigureAwait 호출 의미 [2]파일 다운로드1
11417정성태12/22/201721646.NET Framework: 719. Task를 포함하는 async 메서드의 동작 방식 [2]
11416정성태12/21/201719298.NET Framework: 718. AsyncTaskMethodBuilder.Create() 메서드 동작 방식 [2]
11415정성태12/21/201720999.NET Framework: 717. Task를 포함하지 않는 async 메서드의 동작 방식 [6]
11414정성태12/21/201728174.NET Framework: 716. async 메서드의 void 반환 타입 사용에 대하여파일 다운로드2
11413정성태12/20/201722464개발 환경 구성: 344. 윈도우 10 - TTS 및 음성 인식을 위한 환경 설정
11412정성태12/20/201725110.NET Framework: 715. C# - Windows 10 운영체제의 데스크톱 앱에서 TTS(SpeechSynthesizer) 사용하는 방법 [1]파일 다운로드1
11411정성태12/20/201723402사물인터넷: 15. 라즈베리 파이용 C++ 프로젝트에 SSL Socket 적용
11410정성태12/20/201735677.NET Framework: 714. SSL Socket 예제 - C/C++ 서버, C# 클라이언트 [1]파일 다운로드1
11409정성태12/18/201741638VC++: 122. 오픈 소스 라이브러리를 쉽게 빌드해 주는 "C++ Package Manager for Windows: vcpkg" [7]
11408정성태12/18/201721293.NET Framework: 713. C# - SharpDX + DXGI를 이용한 윈도우 화면 캡처 소스 코드 + Direct2D 출력 + OpenCV (2)파일 다운로드1
11407정성태12/18/201724173.NET Framework: 712. C# - SharpDX + DXGI를 이용한 윈도우 화면 캡처 소스 코드 + Direct2D 출력 + OpenCV [1]파일 다운로드1
... 91  92  93  94  95  96  97  98  99  [100]  101  102  103  104  105  ...