Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 17932
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  [92]  93  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11635정성태8/1/201818694오류 유형: 472. C# 컴파일 오류 - Your project is not referencing the ".NETFramework,Version=v3.5" framework.
11634정성태8/1/201821653.NET Framework: 790. .NET Thread 상태가 Cooperative일 때 GC hang 현상 재현 방법파일 다운로드1
11633정성태7/29/201825601Graphics: 15. Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성 [2]파일 다운로드1
11632정성태7/28/201827916Graphics: 14. C# - Unity에서 캐릭터가 바라보는 방향을 기준으로 카메라의 위치 이동 및 회전하는 방법
11631정성태7/27/201829873Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기 [1]
11630정성태7/27/201825020개발 환경 구성: 391. (GitHub 등과 직접 연동해) 소스 코드 디버깅을 쉽게 해 주는 SourceLink [3]
11629정성태7/26/201823803.NET Framework: 789. C# 컴파일 옵션 - Check for arithmetic overflow/underflow [2]
11628정성태7/25/201825643Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
11627정성태7/25/201820046개발 환경 구성: 390. C# - 컴파일러 옵션 OSS signing / Public Signing
11626정성태7/25/201818408오류 유형: 471. .C++ 함수를 const로 바꾼 경우 C2440 컴파일 오류가 발생한다면?
11625정성태7/24/201817624Math: 49. GeoGebra 기하 (25) - 타원의 중심점 찾기파일 다운로드1
11624정성태7/24/201822068개발 환경 구성: 389. C# - 재현 가능한 빌드(reproducible builds) == Deterministic builds [4]
11623정성태7/24/201821457Math: 48. C# - 가우시안 함수의 이산형(discrete) 커널 값 생성파일 다운로드1
11622정성태7/23/201821616개발 환경 구성: 388. Windows 환경에서 Octave 패키지 설치하는 방법
11621정성태7/23/201819224VC++: 127. 멤버 함수에 대한 포인터를 외부에서 호출하는 방법파일 다운로드1
11620정성태7/22/201822483Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터 [1]파일 다운로드1
11619정성태7/21/201821519Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
11618정성태7/20/201818604개발 환경 구성: 387. 삼성 오디세이(Odyssey) 노트북의 운영체제를 새로 설치하는 방법
11617정성태7/20/201819391Team Foundation Server: 50. TFS 소스 코드 관리 기능 (5) - "Rollback", "Rollback Entire Changeset"
11616정성태7/17/201818750Graphics: 9. Unity Shader - 전역 변수의 초기화
11615정성태7/17/201823093.NET Framework: 788. RawInput을 이용한 키보드/마우스 입력 모니터링파일 다운로드1
11614정성태7/17/201825317Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
11613정성태7/16/201821618Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
11612정성태7/16/201820595Windows: 148. Windows - Raw Input의 Top level collection 의미
11611정성태7/15/201820826Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
11610정성태7/15/201817372Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
... 91  [92]  93  94  95  96  97  98  99  100  101  102  103  104  105  ...