Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 8개 있습니다.)
.NET Framework: 2117. C# - (OpenAI 기반의) Microsoft Semantic Kernel을 이용한 자연어 처리
; https://www.sysnet.pe.kr/2/0/13345

.NET Framework: 2118. C# - Semantic Kernel의 Prompt chaining 예제
; https://www.sysnet.pe.kr/2/0/13347

.NET Framework: 2119. C# - Semantic Kernel의 "Basic Loading of the Kernel" 예제
; https://www.sysnet.pe.kr/2/0/13348

.NET Framework: 2120. C# - Semantic Kernel의 Skill과 Function 사용 예제
; https://www.sysnet.pe.kr/2/0/13349

.NET Framework: 2121. C# - Semantic Kernel의 대화 문맥 유지
; https://www.sysnet.pe.kr/2/0/13352

.NET Framework: 2123. C# - Semantic Kernel의 ChatGPT 대화 구현
; https://www.sysnet.pe.kr/2/0/13355

.NET Framework: 2124. C# - Semantic Kernel의 Planner 사용 예제
; https://www.sysnet.pe.kr/2/0/13357

.NET Framework: 2125. C# - Semantic Kernel의 Semantic Memory 사용 예제
; https://www.sysnet.pe.kr/2/0/13358




C# - (OpenAI 기반의) Microsoft Semantic Kernel을 이용한 자연어 처리

지인으로부터 Semantic Kernel에 대한 소식을 들었습니다. C# 언어를 처음부터 제공한다고 하시면서, 저에게 호기심을 불러일으켰는데요, ChatGPT에게 물어보니 이런 대답을 해줍니다. ^^

Q: Semantic Kernel이 뭐지?

A: Semantic Kernel은 자연어 처리에서 사용되는 텍스트 분석 기술 중 하나입니다. 텍스트에서 핵심 단어 및 문장을 추출하는 데 사용됩니다.

보통 텍스트 분석을 할 때, 우리는 각 단어가 문맥 안에서 어떤 의미를 가지는지 이해하려고 노력합니다. Semantic Kernel은 이러한 작업을 수행하는 도구 중 하나로, 문맥에서 중요한 역할을 하는 단어를 식별하고, 그 단어들 간의 관계를 분석하여 문장에서 중요한 정보를 추출합니다.

예를 들어, "고양이가 좋아하는 음식은 무엇인가?"라는 질문이 있다면, Semantic Kernel은 "고양이", "좋아하는", "음식"이라는 단어를 중요한 단어로 식별하고, 이들 간의 관계를 분석하여 이 문장의 의미를 파악합니다.

이러한 방식으로 Semantic Kernel은 문장이나 문서에서 중요한 정보를 추출하고, 이를 기반으로 다양한 자연어 처리 작업을 수행하는 데 사용됩니다.


아쉽게도 이것은 틀린 대답입니다. ChatGPT는 현재 마이크로소프트가 만든 "Semantic Kernel"이 뭔지 모르고 있으며 위의 대답은 Apache OpenNLP에서 제공하는 기능 중의 하나를 설명하고 있는 것에 불과합니다. 따라서 오히려 검색 엔진 쪽에 물어보는 것이 낫습니다. 아래는 Bing의 CHAT에서 Q&A 결과를 보여줍니다.

마이크로소프트의 Semantic Kernel은 자연어 텍스트를 분석하고 그 의미와 구조를 포착하는 풍부한 의미 표현을 생성할 수 있는 모델과 도구의 집합입니다. 이것은 마이크로소프트의 디자인 및 인공지능 부사장인 John Maeda가 작성한 글에서 확인할 수 있습니다1. 이것은 대규모 언어 모델(Large Language Model, LLM) AI "프롬프트"와 템플릿, 체이닝 및 계획 기능을 제공하는 경량 SDK인 Semantic Kernel (SK)를 사용하여 전통적인 프로그래밍 언어(C# 및 Python 등)를 쉽게 혼합할 수 있습니다2.


제 수준에서 저 답변을 받아들이자면, ML.NET 라이브러리가 기본적인 머신 러닝과 관련된 기능을 제공하는 것처럼, "Semantic Kernel"은 (현재는 OpenAI/Azure OpenAI를 활용해) 자연어 처리를 할 수 있는 라이브러리라고 보시면 될 것 같습니다.

좀 더 간단히 보면, OpenAI API를 좀 더 쉽게 사용할 수 있도록 SDK를 만들어 둔 것이라고 봐도 무방할 듯합니다.




실제로 간단하게 코딩까지 한번 해볼까요? ^^

Hello, Semantic Kernel!
; https://devblogs.microsoft.com/semantic-kernel/hello-world/

SK(Semantic Kernel)은 현재 오픈소스로,

microsoft/semantic-kernel
; https://github.com/microsoft/semantic-kernel

(지원 언어는 더 늘어날 예정이지만, 우선) C#과 파이썬 SDK로 AI LLM을 통합할 수 있는 경량화된 SDK라고 합니다. 경량화되었다는 것은 곧, 모델 데이터가 로컬에 있지 않다는 의미도 될 것입니다. 실제로 로컬에서 인터넷 접근 없이 독자적으로 사용할 수 있는 것은 아니고, 결국에는 OpenAI/Azure OpenAI와 협업해 결과를 얻는 방식입니다.

C#으로 시작해 보면, 우선, 패키지 참조를 하고,

dotnet add package Microsoft.SemanticKernel --prerelease

// 또는, Install-Package Microsoft.SemanticKernel -Pre

nuget 문서에 따라,

Running prompts with input parameters
; https://github.com/microsoft/semantic-kernel/blob/main/dotnet/README.md

다음과 같이 코딩할 수 있습니다.

using Microsoft.SemanticKernel;

internal class Program
{
    // Install-Package Microsoft.SemanticKernel -Pre

    private static async Task<int> Main(string[] args)
    {
        (string apiKey, _) = GetKeyInfo(@"d:\settings\openai_key.txt");

        var kernel = Kernel.Builder.Build();

        // using OpenAI (만약 Azure OpenAI를 사용한다면, AddAzureTextCompletionService 메서드로 호출)
        kernel.Config.AddOpenAITextCompletionService(
            "davinci-openai",
            "text-davinci-003",               // OpenAI Model name
            apiKey       // OpenAI API Key
        ); // Get Started with OpenAI Completions with .NET

        var prompt = @"{{$input}}

One line TLDR with the fewest words.";

        var summarize = kernel.CreateSemanticFunction(prompt);

        string text1 = @"
1st Law of Thermodynamics - Energy cannot be created or destroyed.
2nd Law of Thermodynamics - For a spontaneous process, the entropy of the universe increases.
3rd Law of Thermodynamics - A perfect crystal at zero Kelvin has zero entropy.";

        string text2 = @"
1. An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on by an unbalanced force.
2. The acceleration of an object depends on the mass of the object and the amount of force applied.
3. Whenever one object exerts a force on another object, the second object exerts an equal and opposite on the first.";

        Console.WriteLine(await summarize.InvokeAsync(text1));

        Console.WriteLine(await summarize.InvokeAsync(text2));

        return 0;
    }
}

코드 구조는 간단합니다. 우선 OpenAI API Key (또는, Azure OpenAI Key)가 필요한데요, 지난 글에서 설명했으니 생략합니다.

그다음, AddOpenAITextCompletionService를 호출해 OpenAI 모델과 함께 API Key를 전달해 초기화합니다.

kernel.Config.AddOpenAITextCompletionService(
    "davinci-openai",
    "text-davinci-003",               // OpenAI Model name
    apiKey       // OpenAI API Key
);

첫 번째 인자는 "Service ID"라고 하는데 딱히 이에 대한 정보가 없습니다. 임의로 지정할 수 있는 식별자입니다. 2번째 인자는 OpenAI의 모델 식별자로 역시 지난 글에서 이 값을 구하는 방법을 살펴봤으니 생략합니다.

이후, 사용법은 아주 편안합니다. 입력으로 전달될 텍스트를 간단하게 요약하라는 SemanticFunction을 자연어 기반으로 하나 만들고,

var prompt = @"{{$input}}

One line TLDR with the fewest words.";

var summarize = kernel.CreateSemanticFunction(prompt);

열역학 법칙과 뉴턴의 운동 법칙을 각각 요약하라고 해,

Console.WriteLine(await summarize.InvokeAsync(text1));
// 출력 결과: Energy conserved, entropy increases, zero entropy at 0K.

Console.WriteLine(await summarize.InvokeAsync(text2));
// 출력 결과: Objects move in response to forces

OpenAI로부터 그 출력 결과를 얻을 수 있습니다. 대충 어떤 식인지 이해가 되시죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, 꼭 의도한 대로 동작하지는 않습니다. 위의 SemanticFunction은 요약을 하라고 했는데요, 아래와 같이 질문을 던져 보면,

string text3 = "windbg에 닷넷 응용 프로그램을 분석하는 기능이 있을까?";
Console.WriteLine(await summarize.InvokeAsync(text3));

// 출력 결과: No, WinDbg does not analyze .NET applications.

요약하라고 했는데, 오히려 질문에 대한 답변을 하고 있습니다. 게다가 동일한 질문을 Bing Chat에 했을 때와는 다른 대답을 내놓습니다. ^^;

bing_chat_qa_1.png

(그 와중에, 대답의 근거가 되는 3개의 참조가 전부 제가 쓴 글입니다. ^^;)

어떠세요? 멀고도 험한 자연어 처리가 Semantic Kernel 라이브러리를 이용하면 이렇게 쉬워지니 여러분은 그저 어떤 응용 프로그램을 만들고 싶은지 상상만 하시면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 6/1/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2023-05-12 03시24분
콘솔에서 Azure OpenAI 및 C#으로 챗봇 만들기 | Niels Swimberghe
; https://dimohy.slogger.today/create-a-chatbot-in-the-console-with-azure-openai-and-csharp

정세일 님이 한글로 잘 정리해주셨습니다. ^^ 위의 글은 OpenAI를 Azure.AI.OpenAI 패키지를 이용해 접근하는 방법을 보여줍니다. 사실, Semantic Kernel은 내부적으로 Azure OpenAI 서비스를 접근할 때 "Azure.AI.OpenAI" 패키지를 이용하는데요, 따라서 Semantic Kernel이 한 단계 더 높은 추상화라고 보시면 되겠습니다.

관련해서 아래와 같은 예제도 참고하시고.

Azure-Samples/openai-dotnet-samples
; https://github.com/Azure-Samples/openai-dotnet-samples

betalgo/openai
; https://github.com/betalgo/openai

---------------------------------------

(2024-05-22) Enhance your Windows apps with AI through local APIs and Machine Learning models
; https://learn.microsoft.com/en-us/windows/ai/
정성태

... 106  107  108  109  110  111  [112]  113  114  115  116  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11124정성태1/4/201727784개발 환경 구성: 309. 3년짜리 유효 기간을 제공하는 StartSSL [2]
11123정성태1/3/201723297.NET Framework: 629. .NET Core의 dotnet.exe CLI 명령어 확장 방법 [1]
11122정성태1/3/201722768.NET Framework: 628. TransactionScope에 사용자 정의 트랜잭션을 참여시키는 방법 [2]파일 다운로드1
11121정성태1/1/201720649개발 환경 구성: 308. "ASP.NET Core Web Application (.NET Core)"와 "ASP.NET Core Web Application (.NET Framework)" 차이점
11120정성태12/25/201626494개발 환경 구성: 307. ASP.NET Core Web Application을 IIS에서 호스팅하는 방법
11119정성태12/23/201649162개발 환경 구성: 306. Visual Studio Code에서 Python 개발 환경 구성 [2]
11118정성태12/22/201635934오류 유형: 374. Python 64비트 설치 시 0x80070659 오류 발생 [3]
11117정성태12/21/201622228웹: 35. nopCommerce 예제 사이트 구성 방법
11116정성태12/21/201624165디버깅 기술: 84. NopCommerce의 Autofac 부하(CPU, Memory) [2]
11115정성태12/21/201627128Windows: 133. 윈도우 서버 2016에서 플래시가 동작하지 않는 경우 [2]
11114정성태12/19/201637153Windows: 132. 역슬래시(backslash) 문자가 왜 통화 표기 문자(한글인 경우 "\")로 보일까요? [2]
11113정성태12/6/201621071오류 유형: 373. ICOMAdminCatalog::GetCollection에서 CO_E_ISOLEVELMISMATCH(0x8004E02F) 오류 발생파일 다운로드1
11112정성태11/23/201626266오류 유형: 372. MySQL 서비스가 올라오지 않는 경우 - Error 1067
11111정성태11/23/201634747.NET Framework: 627. C++로 만든 DLL을 C#에서 사용하기 [2]
11110정성태11/17/201621396.NET Framework: 626. Commit 메모리가 낮은 상황에서도 메모리 부족(Out-of-memory) 예외 발생 [2]
11109정성태11/17/201621348.NET Framework: 625. ASP.NET에서 System.Web.HttpApplication 인스턴스는 다중으로 생성됩니다.
11108정성태11/13/201621213.NET Framework: 624. WPF - Line 요소를 Canvas에 위치시켰을 때 흐림(blur) 현상파일 다운로드1
11107정성태11/9/201625099오류 유형: 371. Post cache substitution is not compatible with modules in the IIS integrated pipeline that modify the response buffers.파일 다운로드1
11106정성태11/8/201625267.NET Framework: 623. C# - PeerFinder를 이용한 Wi-Fi Direct 데이터 통신 예제 [2]파일 다운로드1
11105정성태11/8/201619627.NET Framework: 622. PeerFinder Wi-Fi Direct 통신 시 Read/Write/Dispose 문제
11104정성태11/8/201619114개발 환경 구성: 305. PeerFinder로 Wi-Fi Direct 연결 시 방화벽 문제
11103정성태11/8/201619087오류 유형: 370. PeerFinder.ConnectAsync의 결과 값인 Task.Result를 호출할 때 System.AggregateException 예외 발생
11102정성태11/8/201619132오류 유형: 369. PeerFinder.FindAllPeersAsync 호출 시 System.UnauthorizedAccessException 예외 발생
11101정성태11/8/201621973.NET Framework: 621. 닷넷 프로파일러의 오류 코드 - 0x80131363
11100정성태11/7/201628717개발 환경 구성: 304. Wi-Fi Direct 지원 여부 확인 방법 [1]
11099정성태11/7/201630671.NET Framework: 620. C#에서 C/C++ 함수로 콜백 함수를 전달하는 예제 코드파일 다운로드1
... 106  107  108  109  110  111  [112]  113  114  115  116  117  118  119  120  ...