Microsoft MVP성태의 닷넷 이야기
닷넷: 2182. C# - .NET 7부터 추가된 Int128, UInt128 [링크 복사], [링크+제목 복사],
조회: 2622
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - .NET 7부터 추가된 Int128, UInt128

(gcc 등에서는 지원하지만) Visual C++도 지원하지 않는 Int128을 닷넷 8부터 추가해 C# 언어에서도 사용할 수 있게 되었습니다. ^^

Int128 Struct
; https://learn.microsoft.com/en-us/dotnet/api/system.int128

단지, 다른 타입과는 달리 C# 측에서 대응하는 alias가 없어 BigInteger를 사용하듯이 써야 합니다.

{
    Int128 value = long.MaxValue;
    value *= long.MaxValue;
    Console.WriteLine(value); // 85070591730234615847396907784232501249
}

{
    Int128 value = Int128.Parse("85070591730234615847396907784232501249");
    Console.WriteLine(value);
}

개인적으로 이걸 보고 궁금했던 게, Interlocked 측에서의 지원이 있느냐는 것이었습니다. 아쉽게도 여전히 (8바이트) long 형식까지만 지원하지만, 그래도 아예 불가능한 것은 아닙니다. 만들면 되니까요? ^^




이를 위해 우리는 inline asm 기법을 사용해야 합니다.

C++의 inline asm 사용을 .NET으로 포팅하는 방법
; https://www.sysnet.pe.kr/2/0/1267

게다가 InterlockedCompareExchange128 API를 구현한 소스 코드가 GitHub에 있으니,

Execute a InterlockedCompareExchange128 natively from C#
; https://gist.github.com/jduncanator/ab17e4e476300d3eb0b7c19f6f38429a

기왕이면 여기에 함수 포인터를 곁들여,

C# 9.0 - (6) 함수 포인터(Function pointers)
; https://www.sysnet.pe.kr/2/0/12374

다음과 같은 식으로,

using System.Runtime.InteropServices;

namespace int128sample;
public unsafe class InterlockedExtension
{   
    // Execute a InterlockedCompareExchange128 natively from C#
    // ; https://gist.github.com/jduncanator/ab17e4e476300d3eb0b7c19f6f38429a
    static byte[] asmCmpXchg16b = new byte[] {
                0x48, 0x89, 0x5C, 0x24, 0x08,  // MOV [RSP+0x8], RBX
                0x49, 0x8B, 0x01,              // MOV RAX, [R9]
                0x49, 0x89, 0xCA,              // MOV R10, RCX
                0x48, 0x89, 0xD1,              // MOV RCX, RDX
                0x4C, 0x89, 0xC3,              // MOV RBX, R8
                0x49, 0x8B, 0x51, 0x08,        // MOV RDX, [R9+0x8]
                0xF0, 0x49, 0x0F, 0xC7, 0x0A,  // LOCK CMPXCHG16B [R10]
                0x48, 0x8B, 0x5C, 0x24, 0x08,  // MOV RBX, [RSP+0x8]
                0x49, 0x89, 0x01,              // MOV [R9], RAX
                0x0F, 0x94, 0xC0,              // SETE AL
                0x49, 0x89, 0x51, 0x08,        // MOV [R9+0x8], RDX
                0xC2, 0x00, 0x00               // RET 0
            };

    public static delegate* unmanaged[Stdcall, SuppressGCTransition] _InterlockedCompareExchange128;
    static GCHandle _InterlockedCompareExchange128Handle;

    static InterlockedExtension()
    {
        _InterlockedCompareExchange128Handle = GCHandle.Alloc(asmCmpXchg16b, GCHandleType.Pinned);
        nint pData = (nint)_InterlockedCompareExchange128Handle.AddrOfPinnedObject().ToPointer();
        
        EnsureMemoryIsExecutable(pData, asmCmpXchg16b.Length);
        _InterlockedCompareExchange128 = (delegate* unmanaged[Stdcall, SuppressGCTransition])pData;
    }

    // ...[생략]...
}

기반을 만들 수 있습니다. 간단하게 테스트 코드는 이렇게 만들 수 있고!

{
    Int128 value = 0;
    Int128 comparand = 0;
    InterlockedExtension._InterlockedCompareExchange128((long*)&value, 0, 1, (long*)&comparand);
    Console.WriteLine(value); // 출력 결과: 1
}




그런데 실행해 보면, 지난 글에서 다룬 것과 동일한 aligned 문제가,

Visual C++ - InterlockedCompareExchange128 사용 방법
; https://www.sysnet.pe.kr/2/0/13472#align16

GC Heap 또는 스택에 할당된 Int128 변수에 적용되므로 이런 예외가 확률적으로 발생하게 됩니다.

Fatal error. System.AccessViolationException: Attempted to read or write protected memory. This is often an indication that other memory is corrupt.
   at int128sample.Program.Main(System.String[])

만약 오류가 발생한다면 다음과 같이 변수 앞에 임시 조치를 취하면,

{
    long temporary = 0; // 8바이트 점유
    Int128 value = 0; // 이전에 8바이트 정렬이었다면 (운이 따르는 경우) temporary 변수로 인해 16바이트 위치로 변경
    // ...[생략]...
}

16바이트 정렬 효과를 갖게 돼 정상적으로 실행될 것입니다. 물론, 이 방법을 (release 빌드에서는 없어지는 문제도 있고, 최적화 시 재정렬될 수도 있으므로) 업무 코드에서 사용할 수는 없습니다. 그렇다면, C/C++의 경우 전역 변수를 사용하면 16바이트 정렬이 되었는데, C#은 어떨까요?

C#은 전역 변수라는 것이 없이, class 또는 struct 내에 static으로 흉내를 낼 수 있는데요,

internal unsafe class Program
{
    static Int128 g_value = 0;

    static void Main(string[] args)
    {
        fixed(Int128* ptr = &g_value)
        {
            Int128 value = 0;
            Int128 comparand = 0;
            InterlockedExtension._InterlockedCompareExchange128((long*)ptr, 0, 1, (long*)&comparand);
            Console.WriteLine(value);
        }
    }
}

이것 역시 확률적으로 crash가 발생합니다. 이유는, g_value가 GC Heap(HighFrequencyHeap)에 할당이 될 텐데 그런 경우 16바이트 정렬된 위치에 할당이 되리라는 것을 보장할 수 없기 때문입니다.

그렇다고 C#에 C/C++과 같은 "__declspec(align(16))"이 있는 것도 아니고... 난감하군요. ^^




자, 그렇다면 C#에서 해결해야 할 가장 큰 난제는 바로 정렬입니다. 이를 위해 StructLayout의 Pack이 있지만,

[StructLayout(LayoutKind.Sequential, Pack = 16)]
public struct Data
{
    byte __padding0; // (운에 따라) 이 위치가 0x0018이라면,
    public Int128 Value; // 이 위치는 16바이트를 건너 뛴 0x0028로 정렬
}

비록 alignment에 관여를 하긴 해도, 그것은 내부 멤버들의 정렬에 영향을 주는 것이기 때문에 애당초 저 구조체가 8바이트 정렬로 되는 것을 막을 수는 없습니다.

그렇다면 Win32 API를 interop 해야 할 것 같은데, 다행히 .NET 6부터 NativeMemory.AlignedAlloc이 제공되므로,

NativeMemory.AlignedAlloc(UIntPtr, UIntPtr) Method
; https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.nativememory.alignedalloc

이것을 감싸 다음과 같은 도우미 타입을 만들 수 있습니다.

public unsafe class NativeInt128 : IDisposable
{
    nint _value;

    public NativeInt128() : this(0)
    {
    }

    public NativeInt128(long value)
    {
        _value = (nint)NativeMemory.AlignedAlloc(16, 16);
        *(Int128*)_value = value;
    }

    public nint ValuePtr
    {
        get { return _value; }
    }

    public Int128 Value
    {
        get
        {
            return *(Int128*)_value;
        }
        set
        {
            *(Int128*)_value = value;
        }
    }

    public void Dispose()
    {
        Dispose(true);
        GC.SuppressFinalize(this);
    }

    ~NativeInt128()
    {
        Dispose(false);
    }

    protected virtual void Dispose(bool disposing)
    {
        if (_value == 0)
        {
            return;
        }

        NativeMemory.Free(_value.ToPointer());
        _value = 0;
    }
}

그런 다음, 이렇게 써야 그나마 안전하게 C#에서 Int128에 대한 InterlockedCompareExchange128 코드를 사용할 수 있습니다.

NativeInt128 data = new NativeInt128();
Int128 comparand = 0;
InterlockedExtension._InterlockedCompareExchange128((long*)data.ValuePtr, 0, 1, (long*)&comparand);

자, 여기까지 모두 준비되었으면 이제 InterlockedCompareExchange128을 이용해 Interlocked Increment 기능도 구현할 수 있습니다.

public void InterlockedIncrement()
{
    Int128 comparand = *(Int128*)_value;
    long* ptrLow;
    long* ptrHigh;

    Int128 newValue;
    ptrLow = (long*)&newValue;
    ptrHigh = ptrLow + 1;

    do
    {
        newValue = comparand + 1;
    } while (InterlockedExtension._InterlockedCompareExchange128((long*)_value,
                    *ptrHigh, *ptrLow, (long*)&comparand) == 0);
}

결국 이렇게 해서 구현하긴 했지만, 사실 이 과정을 그냥 하나의 응용 사례라고만 보시고 실제 코드는 단순히 lock을 쓰는 것이 훨씬 더 효율적입니다. ^^

object _lockValue = new object();

public void InterlockedIncrement()
{
    lock (_lockValue)
    {
        this.Value ++;
    }
}

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, System.Text.Json에서의 Int128 직렬화는 .NET 8부터 추가되었다고 합니다.

Built-in support for Half, Int128 and UInt128 numeric types
; https://devblogs.microsoft.com/dotnet/announcing-dotnet-8-preview-7/#built-in-support-for-half-int128-and-uint128-numeric-types




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 1/25/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2023-12-31 02시08분
NativeMemory.AlignedAlloc은 내부적으로 (윈도우의 경우) aligned_malloc을 호출합니다.

_aligned_malloc
; https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc

참고로 Virtual 메모리 수준에서 메모리 정렬을 요구하는 함수도 있습니다.

How to allocate address space with a custom alignment or in a custom address region
; https://devblogs.microsoft.com/oldnewthing/20231229-00/?p=109204

VirtualAlloc2 function (memoryapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc2
정성태

1  2  3  4  5  6  7  8  9  10  11  12  [13]  14  15  ...
NoWriterDateCnt.TitleFile(s)
13311정성태4/7/20234533C/C++: 163. Visual Studio 2022 - DirectShow 예제 컴파일(WAV Dest)
13310정성태4/6/20234159C/C++: 162. Visual Studio - /NODEFAULTLIB 옵션 설정 후 수동으로 추가해야 할 library
13309정성태4/5/20234308.NET Framework: 2107. .NET 6+ FileStream의 구조 변화
13308정성태4/4/20234205스크립트: 47. 파이썬의 time.time() 실숫값을 GoLang / C#에서 사용하는 방법
13307정성태4/4/20233959.NET Framework: 2106. C# - .NET Core/5+ 환경의 Windows Forms 응용 프로그램에서 HINSTANCE 구하는 방법
13306정성태4/3/20233733Windows: 243. Win32 - 윈도우(cbWndExtra) 및 윈도우 클래스(cbClsExtra) 저장소 사용 방법
13305정성태4/1/20234130Windows: 242. Win32 - 시간 만료를 갖는 MessageBox 대화창 구현 (쉬운 버전)파일 다운로드1
13304정성태3/31/20234444VS.NET IDE: 181. Visual Studio - C/C++ 프로젝트에 application manifest 적용하는 방법
13303정성태3/30/20233819Windows: 241. 환경 변수 %PATH%에 DLL을 찾는 규칙
13302정성태3/30/20234449Windows: 240. RDP 환경에서 바뀌는 %TEMP% 디렉터리 경로
13301정성태3/29/20234573Windows: 239. C/C++ - Windows 10 Version 1607부터 지원하는 /DEPENDENTLOADFLAG 옵션파일 다운로드1
13300정성태3/28/20234210Windows: 238. Win32 - Modal UI 창에 올바른 Owner(HWND)를 설정해야 하는 이유
13299정성태3/27/20233966Windows: 237. Win32 - 모든 메시지 루프를 탈출하는 WM_QUIT 메시지
13298정성태3/27/20233955Windows: 236. Win32 - MessageBeep 소리가 안 들린다면?
13297정성태3/26/20234612Windows: 235. Win32 - Code Modal과 UI Modal
13296정성태3/25/20233934Windows: 234. IsDialogMessage와 협업하는 WM_GETDLGCODE Win32 메시지 [1]파일 다운로드1
13295정성태3/24/20234208Windows: 233. Win32 - modeless 대화창을 modal처럼 동작하게 만드는 방법파일 다운로드1
13294정성태3/22/20234379.NET Framework: 2105. LargeAddressAware 옵션이 적용된 닷넷 32비트 프로세스의 가용 메모리 - 두 번째
13293정성태3/22/20234441오류 유형: 853. dumpbin - warning LNK4048: Invalid format file; ignored
13292정성태3/21/20234553Windows: 232. C/C++ - 일반 창에도 사용 가능한 IsDialogMessage파일 다운로드1
13291정성태3/20/20234947.NET Framework: 2104. C# Windows Forms - WndProc 재정의와 IMessageFilter 사용 시의 차이점
13290정성태3/19/20234426.NET Framework: 2103. C# - 윈도우에서 기본 제공하는 FindText 대화창 사용법파일 다운로드1
13289정성태3/18/20233636Windows: 231. Win32 - 대화창 템플릿의 2진 리소스를 읽어들여 자식 윈도우를 생성하는 방법파일 다운로드1
13288정성태3/17/20233748Windows: 230. Win32 - 대화창의 DLU 단위를 pixel로 변경하는 방법파일 다운로드1
13287정성태3/16/20233926Windows: 229. Win32 - 대화창 템플릿의 2진 리소스를 읽어들여 윈도우를 직접 띄우는 방법파일 다운로드1
13286정성태3/15/20234366Windows: 228. Win32 - 리소스에 포함된 대화창 Template의 2진 코드 해석 방법
1  2  3  4  5  6  7  8  9  10  11  12  [13]  14  15  ...