Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

C# - IPGlobalProperties를 이용해 netstat처럼 사용 중인 Socket 목록 구하는 방법

IPGlobalProperties를 이용하면,

IPGlobalProperties Class
; https://learn.microsoft.com/en-us/dotnet/api/system.net.networkinformation.ipglobalproperties

netstat를 이용한 출력 결과를 코드로 가져오는 것이 가능합니다.

예를 들어, "netstat -ano | findstr LISTEN"처럼 현재 열려 있는 TCP 서버 소켓을 다음과 같은 코드로 나열하는 것이 가능합니다.

{
    var props = IPGlobalProperties.GetIPGlobalProperties();
    var listeners = props.GetActiveTcpListeners(); // Listen 중인 TCP 소켓을 열거
    foreach (var item in listeners)
    {
        Console.WriteLine(item);
    }
}

이것을 이용하면, 특정 서비스로의 연결을 가지고 있는지 테스트하는 것도 가능합니다. 예를 들어, 현재 머신에서 SQL Server (1433)에 대한 연결이 있는지,

{
    var props = IPGlobalProperties.GetIPGlobalProperties();
    var listeners = props.GetActiveTcpConnections();
    foreach (var item in listeners)
    {
        if (item.RemoteEndPoint.Port == 1433)
        {
            Console.WriteLine($"{item.LocalEndPoint}-{item.RemoteEndPoint}");
        }
    }
}

/*
192.168.100.20:42621-192.168.100.50:1433
*/

저런 식으로 확인할 수도 있습니다.




IPGlobalProperties의 구현 코드는 윈도우의 경우 GetTcpTable Win32 API를 호출하게 됩니다.

GetTcpTable function (iphlpapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-gettcptable

이 함수의 사용법은 아래의 글에서 잘 설명하고 있는데요,

Getting active TCP/UDP connections on a box
; https://www.codeproject.com/Articles/4298/Getting-active-TCP-UDP-connections-on-a-box

재미있는 것은, GetTcpTable은 해당 소켓이 속한 Process ID를 가져오지는 않습니다. 그런데 위의 글에 보면, 문서화되지 않은 AllocateAndGetTcpExTableFromStack API의 경우 Process ID를 가져올 수 있다고 하는데요, 현재 시점(2024-01-02)에는 다음과 같이 문서화된 상태입니다.

AllocateAndGetTcpExTableFromStack function (iphlpapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-allocateandgettcpextablefromstack

단지, 도움말에도 나오지만 지원이 끊길 예정이고, 대신 GetExtendedTcpTable 함수를 사용하라고 나옵니다.

그런데 사실 닷넷에서도 IPv6 정보에 대해서는 GetExtendedTcpTable을 이용해 조회를 하고 있습니다.

/// 닷넷 소스 코드
/// Gets the active TCP connections. Uses the native GetTcpTable API.
private static unsafe List<SystemTcpConnectionInformation> GetAllTcpConnections()
{
    uint size = 0;
    uint result;
    List<SystemTcpConnectionInformation> tcpConnections = new List<SystemTcpConnectionInformation>();

    // Check if it supports IPv4 for IPv6 only modes.
    if (Socket.OSSupportsIPv4)
    {
        // ...[생략]...
        result = Interop.IpHlpApi.GetTcpTable(buffer, &size, order: true);
        // ...[생략]...
    }

    if (Socket.OSSupportsIPv6)
    {
        // ...[생략]...
        result = Interop.IpHlpApi.GetExtendedTcpTable(IntPtr.Zero, &size, order: true, (uint)AddressFamily.InterNetworkV6,
        // ...[생략]...
    }

    return tcpConnections;
}

따라서, IPv4에 대해서도 간단한 소스코드 변경만으로 GetExtendedTcpTable을 지원할 수 있었을 것이고, 자연스럽게 Process ID를 구할 수 있었을 텐데도 관련 코드는 누락이 된 상태입니다.




결국, 소켓에 대한 연관 프로세스를 알고 싶다면 netstat를 통해 우회하던가,

c:\temp> netstat -ano | findstr LISTEN
  TCP    0.0.0.0:80             0.0.0.0:0              LISTENING       4
  TCP    0.0.0.0:135            0.0.0.0:0              LISTENING       1824
  TCP    0.0.0.0:445            0.0.0.0:0              LISTENING       4
  TCP    0.0.0.0:1433           0.0.0.0:0              LISTENING       7884
...[생략]...

아니면 직접 GetExtendedTcpTable API를 사용하는 코드를 작성해야 합니다. 사실 이에 대한 포팅이 매우 쉬운데요, 닷넷 소스코드의 전체적인 구조를 그대로 베끼면서 GetExtendedTcpTable을 호출하도록 변경하는 정도만 신경 쓰면 되므로, 대충 다음과 같이 구현하는 것이 가능합니다.

static unsafe List<SystemTcpConnectionInformation> GetAllTcpConnections(AF_CLASS afClass, TCP_TABLE_CLASS tableClass)
{
    uint size = 0;
    uint result;
    List<SystemTcpConnectionInformation> tcpConnections = new List<SystemTcpConnectionInformation>();

    // Check if it supports IPv4 for IPv6 only modes.
    if (Socket.OSSupportsIPv4 && afClass == AF_CLASS.AF_INET)
    {
        // Get the buffer size needed.
        result = GetExtendedTcpTable(IntPtr.Zero, out size, true, afClass, tableClass, 0);

        while (result == ERROR_INSUFFICIENT_BUFFER)
        {
            // Allocate the buffer and get the TCP table.
            IntPtr buffer = Marshal.AllocHGlobal((int)size);
            try
            {
                result = GetExtendedTcpTable(buffer, out size, true, afClass, tableClass, 0);

                if (result == ERROR_SUCCESS)
                {
                    var span = new ReadOnlySpan<byte>((byte*)buffer, (int)size);

                    // The table info just gives us the number of rows.
                    ref readonly MibTcpTableOwnerPid tcpTableInfo = ref MemoryMarshal.AsRef<MibTcpTableOwnerPid>(span);

                    if (tcpTableInfo.numberOfEntries > 0)
                    {
                        // Skip over the tableinfo to get the inline rows.
                        span = span.Slice(sizeof(MibTcpTableOwnerPid));

                        for (int i = 0; i < tcpTableInfo.numberOfEntries - 1; i++)
                        {
                            SystemTcpConnectionInformation item = new SystemTcpConnectionInformation(in MemoryMarshal.AsRef<MibTcpRowOwnerPid>(span));
                            tcpConnections.Add(item);
                            span = span.Slice(sizeof(MibTcpRowOwnerPid));
                        }
                    }
                }
            }
            finally
            {
                Marshal.FreeHGlobal(buffer);
            }
        }

        // If we don't have any ipv4 interfaces detected, just continue.
        if (result != ERROR_SUCCESS && result != ERROR_NO_DATA)
        {
            throw new NetworkInformationException((int)result);
        }
    }

    if (Socket.OSSupportsIPv6 && afClass == AF_CLASS.AF_INET6)
    {
        // Get the buffer size needed.
        size = 0;
        result = GetExtendedTcpTable(IntPtr.Zero, out size, true, afClass, tableClass, 0);

        while (result == ERROR_INSUFFICIENT_BUFFER)
        {
            // Allocate the buffer and get the TCP table.
            IntPtr buffer = Marshal.AllocHGlobal((int)size);
            try
            {
                result = GetExtendedTcpTable(buffer, out size, true, afClass, tableClass, 0);
                if (result == ERROR_SUCCESS)
                {
                    var span = new ReadOnlySpan<byte>((byte*)buffer, (int)size);

                    // The table info just gives us the number of rows.
                    ref readonly MibTcp6TableOwnerPid tcpTable6OwnerPid = ref MemoryMarshal.AsRef<MibTcp6TableOwnerPid>(span);

                    if (tcpTable6OwnerPid.numberOfEntries > 0)
                    {
                        // Skip over the tableinfo to get the inline rows.
                        span = span.Slice(sizeof(MibTcp6TableOwnerPid));

                        for (int i = 0; i < tcpTable6OwnerPid.numberOfEntries; i++)
                        {
                            tcpConnections.Add(new SystemTcpConnectionInformation(in MemoryMarshal.AsRef<MibTcp6RowOwnerPid>(span)));
                            // We increment the pointer to the next row.
                            span = span.Slice(sizeof(MibTcp6RowOwnerPid));
                        }
                    }
                }
            }
            finally
            {
                Marshal.FreeHGlobal(buffer);
            }
        }

        // If we don't have any ipv6 interfaces detected, just continue.
        if (result != ERROR_SUCCESS && result != ERROR_NO_DATA)
        {
            throw new NetworkInformationException((int)result);
        }
    }

    return tcpConnections;
}

그다음 이렇게 사용해 주면,

{
    var props = IPGlobalPropertiesExtension.GetTcpIPv4Listeners();
    foreach (var item in props)
    {
        Console.WriteLine(item);
    }
}

{
    var props = IPGlobalPropertiesExtension.GetTcpIPv6Listeners();
    foreach (var item in props)
    {
        Console.WriteLine(item);
    }
}

다음과 같은 출력 결과를 얻을 수 있습니다.

0.0.0.0:80 Listen (pid:4)
0.0.0.0:135 Listen (pid:1824)
0.0.0.0:445 Listen (pid:4)
0.0.0.0:1433 Listen (pid:7884)
...[생략]...
[::]:80 Listen (pid:4)
[::]:135 Listen (pid:1824)
[::]:445 Listen (pid:4)
[::]:1433 Listen (pid:7884)
...[생략]...

(첨부 파일은 이 글의 소스코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 2/15/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  [2]  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13592정성태4/2/20241467C/C++: 165. CLion으로 만든 Rust Win32 DLL을 C#과 연동
13591정성태4/2/20241446닷넷: 2234. C# - WPF 응용 프로그램에 Blazor App 통합파일 다운로드1
13590정성태3/31/20241276Linux: 70. Python - uwsgi 응용 프로그램이 k8s 환경에서 OOM 발생하는 문제
13589정성태3/29/20241374닷넷: 2233. C# - 프로세스 CPU 사용량을 나타내는 성능 카운터와 Win32 API파일 다운로드1
13588정성태3/28/20241793닷넷: 2232. C# - Unity + 닷넷 App(WinForms/WPF) 간의 Named Pipe 통신 [2]파일 다운로드1
13587정성태3/27/20241460오류 유형: 900. Windows Update 오류 - 8024402C, 80070643
13586정성태3/27/20241781Windows: 263. Windows - 복구 파티션(Recovery Partition) 용량을 늘리는 방법
13585정성태3/26/20241573Windows: 262. PerformanceCounter의 InstanceName에 pid를 추가한 "Process V2"
13584정성태3/26/20241493개발 환경 구성: 708. Unity3D - C# Windows Forms / WPF Application에 통합하는 방법파일 다운로드1
13583정성태3/25/20241523Windows: 261. CPU Utilization이 100% 넘는 경우를 성능 카운터로 확인하는 방법
13582정성태3/19/20241663Windows: 260. CPU 사용률을 나타내는 2가지 수치 - 사용량(Usage)과 활용률(Utilization)파일 다운로드1
13581정성태3/18/20241799개발 환경 구성: 707. 빌드한 Unity3D 프로그램을 C++ Windows Application에 통합하는 방법
13580정성태3/15/20241326닷넷: 2231. C# - ReceiveTimeout, SendTimeout이 적용되지 않는 Socket await 비동기 호출파일 다운로드1
13579정성태3/13/20241527오류 유형: 899. HTTP Error 500.32 - ANCM Failed to Load dll
13578정성태3/11/20241708닷넷: 2230. C# - 덮어쓰기 가능한 환형 큐 (Circular queue)파일 다운로드1
13577정성태3/9/20241992닷넷: 2229. C# - 닷넷을 위한 난독화 도구 소개 (예: ConfuserEx)
13576정성태3/8/20241640닷넷: 2228. .NET Profiler - IMetaDataEmit2::DefineMethodSpec 사용법
13575정성태3/7/20241763닷넷: 2227. 최신 C# 문법을 .NET Framework 프로젝트에 쓸 수 있을까요?
13574정성태3/6/20241668닷넷: 2226. C# - "Docker Desktop for Windows" Container 환경에서의 IPv6 DualMode 소켓
13573정성태3/5/20241595닷넷: 2225. Windbg - dumasync로 분석하는 async/await 호출
13572정성태3/4/20241746닷넷: 2224. C# - WPF의 Dispatcher Queue로 알아보는 await 호출의 hang 현상파일 다운로드1
13571정성태3/1/20241837닷넷: 2223. C# - await 호출과 WPF의 Dispatcher Queue 동작 확인파일 다운로드1
13570정성태2/29/20241838닷넷: 2222. C# - WPF의 Dispatcher Queue 동작 확인파일 다운로드1
13569정성태2/28/20241761닷넷: 2221. C# - LoadContext, LoadFromContext 그리고 GAC파일 다운로드1
13568정성태2/27/20241883닷넷: 2220. C# - .NET Framework 프로세스의 LoaderOptimization 설정을 확인하는 방법파일 다운로드1
13567정성태2/27/20241831오류 유형: 898. .NET Framework 3.5 이하에서 mscoree.tlb 참조 시 System.BadImageFormatException파일 다운로드1
1  [2]  3  4  5  6  7  8  9  10  11  12  13  14  15  ...