Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

C# - IPGlobalProperties를 이용해 netstat처럼 사용 중인 Socket 목록 구하는 방법

IPGlobalProperties를 이용하면,

IPGlobalProperties Class
; https://learn.microsoft.com/en-us/dotnet/api/system.net.networkinformation.ipglobalproperties

netstat를 이용한 출력 결과를 코드로 가져오는 것이 가능합니다.

예를 들어, "netstat -ano | findstr LISTEN"처럼 현재 열려 있는 TCP 서버 소켓을 다음과 같은 코드로 나열하는 것이 가능합니다.

{
    var props = IPGlobalProperties.GetIPGlobalProperties();
    var listeners = props.GetActiveTcpListeners(); // Listen 중인 TCP 소켓을 열거
    foreach (var item in listeners)
    {
        Console.WriteLine(item);
    }
}

이것을 이용하면, 특정 서비스로의 연결을 가지고 있는지 테스트하는 것도 가능합니다. 예를 들어, 현재 머신에서 SQL Server (1433)에 대한 연결이 있는지,

{
    var props = IPGlobalProperties.GetIPGlobalProperties();
    var listeners = props.GetActiveTcpConnections();
    foreach (var item in listeners)
    {
        if (item.RemoteEndPoint.Port == 1433)
        {
            Console.WriteLine($"{item.LocalEndPoint}-{item.RemoteEndPoint}");
        }
    }
}

/*
192.168.100.20:42621-192.168.100.50:1433
*/

저런 식으로 확인할 수도 있습니다.




IPGlobalProperties의 구현 코드는 윈도우의 경우 GetTcpTable Win32 API를 호출하게 됩니다.

GetTcpTable function (iphlpapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-gettcptable

이 함수의 사용법은 아래의 글에서 잘 설명하고 있는데요,

Getting active TCP/UDP connections on a box
; https://www.codeproject.com/Articles/4298/Getting-active-TCP-UDP-connections-on-a-box

재미있는 것은, GetTcpTable은 해당 소켓이 속한 Process ID를 가져오지는 않습니다. 그런데 위의 글에 보면, 문서화되지 않은 AllocateAndGetTcpExTableFromStack API의 경우 Process ID를 가져올 수 있다고 하는데요, 현재 시점(2024-01-02)에는 다음과 같이 문서화된 상태입니다.

AllocateAndGetTcpExTableFromStack function (iphlpapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-allocateandgettcpextablefromstack

단지, 도움말에도 나오지만 지원이 끊길 예정이고, 대신 GetExtendedTcpTable 함수를 사용하라고 나옵니다.

그런데 사실 닷넷에서도 IPv6 정보에 대해서는 GetExtendedTcpTable을 이용해 조회를 하고 있습니다.

/// 닷넷 소스 코드
/// Gets the active TCP connections. Uses the native GetTcpTable API.
private static unsafe List<SystemTcpConnectionInformation> GetAllTcpConnections()
{
    uint size = 0;
    uint result;
    List<SystemTcpConnectionInformation> tcpConnections = new List<SystemTcpConnectionInformation>();

    // Check if it supports IPv4 for IPv6 only modes.
    if (Socket.OSSupportsIPv4)
    {
        // ...[생략]...
        result = Interop.IpHlpApi.GetTcpTable(buffer, &size, order: true);
        // ...[생략]...
    }

    if (Socket.OSSupportsIPv6)
    {
        // ...[생략]...
        result = Interop.IpHlpApi.GetExtendedTcpTable(IntPtr.Zero, &size, order: true, (uint)AddressFamily.InterNetworkV6,
        // ...[생략]...
    }

    return tcpConnections;
}

따라서, IPv4에 대해서도 간단한 소스코드 변경만으로 GetExtendedTcpTable을 지원할 수 있었을 것이고, 자연스럽게 Process ID를 구할 수 있었을 텐데도 관련 코드는 누락이 된 상태입니다.




결국, 소켓에 대한 연관 프로세스를 알고 싶다면 netstat를 통해 우회하던가,

c:\temp> netstat -ano | findstr LISTEN
  TCP    0.0.0.0:80             0.0.0.0:0              LISTENING       4
  TCP    0.0.0.0:135            0.0.0.0:0              LISTENING       1824
  TCP    0.0.0.0:445            0.0.0.0:0              LISTENING       4
  TCP    0.0.0.0:1433           0.0.0.0:0              LISTENING       7884
...[생략]...

아니면 직접 GetExtendedTcpTable API를 사용하는 코드를 작성해야 합니다. 사실 이에 대한 포팅이 매우 쉬운데요, 닷넷 소스코드의 전체적인 구조를 그대로 베끼면서 GetExtendedTcpTable을 호출하도록 변경하는 정도만 신경 쓰면 되므로, 대충 다음과 같이 구현하는 것이 가능합니다.

static unsafe List<SystemTcpConnectionInformation> GetAllTcpConnections(AF_CLASS afClass, TCP_TABLE_CLASS tableClass)
{
    uint size = 0;
    uint result;
    List<SystemTcpConnectionInformation> tcpConnections = new List<SystemTcpConnectionInformation>();

    // Check if it supports IPv4 for IPv6 only modes.
    if (Socket.OSSupportsIPv4 && afClass == AF_CLASS.AF_INET)
    {
        // Get the buffer size needed.
        result = GetExtendedTcpTable(IntPtr.Zero, out size, true, afClass, tableClass, 0);

        while (result == ERROR_INSUFFICIENT_BUFFER)
        {
            // Allocate the buffer and get the TCP table.
            IntPtr buffer = Marshal.AllocHGlobal((int)size);
            try
            {
                result = GetExtendedTcpTable(buffer, out size, true, afClass, tableClass, 0);

                if (result == ERROR_SUCCESS)
                {
                    var span = new ReadOnlySpan<byte>((byte*)buffer, (int)size);

                    // The table info just gives us the number of rows.
                    ref readonly MibTcpTableOwnerPid tcpTableInfo = ref MemoryMarshal.AsRef<MibTcpTableOwnerPid>(span);

                    if (tcpTableInfo.numberOfEntries > 0)
                    {
                        // Skip over the tableinfo to get the inline rows.
                        span = span.Slice(sizeof(MibTcpTableOwnerPid));

                        for (int i = 0; i < tcpTableInfo.numberOfEntries - 1; i++)
                        {
                            SystemTcpConnectionInformation item = new SystemTcpConnectionInformation(in MemoryMarshal.AsRef<MibTcpRowOwnerPid>(span));
                            tcpConnections.Add(item);
                            span = span.Slice(sizeof(MibTcpRowOwnerPid));
                        }
                    }
                }
            }
            finally
            {
                Marshal.FreeHGlobal(buffer);
            }
        }

        // If we don't have any ipv4 interfaces detected, just continue.
        if (result != ERROR_SUCCESS && result != ERROR_NO_DATA)
        {
            throw new NetworkInformationException((int)result);
        }
    }

    if (Socket.OSSupportsIPv6 && afClass == AF_CLASS.AF_INET6)
    {
        // Get the buffer size needed.
        size = 0;
        result = GetExtendedTcpTable(IntPtr.Zero, out size, true, afClass, tableClass, 0);

        while (result == ERROR_INSUFFICIENT_BUFFER)
        {
            // Allocate the buffer and get the TCP table.
            IntPtr buffer = Marshal.AllocHGlobal((int)size);
            try
            {
                result = GetExtendedTcpTable(buffer, out size, true, afClass, tableClass, 0);
                if (result == ERROR_SUCCESS)
                {
                    var span = new ReadOnlySpan<byte>((byte*)buffer, (int)size);

                    // The table info just gives us the number of rows.
                    ref readonly MibTcp6TableOwnerPid tcpTable6OwnerPid = ref MemoryMarshal.AsRef<MibTcp6TableOwnerPid>(span);

                    if (tcpTable6OwnerPid.numberOfEntries > 0)
                    {
                        // Skip over the tableinfo to get the inline rows.
                        span = span.Slice(sizeof(MibTcp6TableOwnerPid));

                        for (int i = 0; i < tcpTable6OwnerPid.numberOfEntries; i++)
                        {
                            tcpConnections.Add(new SystemTcpConnectionInformation(in MemoryMarshal.AsRef<MibTcp6RowOwnerPid>(span)));
                            // We increment the pointer to the next row.
                            span = span.Slice(sizeof(MibTcp6RowOwnerPid));
                        }
                    }
                }
            }
            finally
            {
                Marshal.FreeHGlobal(buffer);
            }
        }

        // If we don't have any ipv6 interfaces detected, just continue.
        if (result != ERROR_SUCCESS && result != ERROR_NO_DATA)
        {
            throw new NetworkInformationException((int)result);
        }
    }

    return tcpConnections;
}

그다음 이렇게 사용해 주면,

{
    var props = IPGlobalPropertiesExtension.GetTcpIPv4Listeners();
    foreach (var item in props)
    {
        Console.WriteLine(item);
    }
}

{
    var props = IPGlobalPropertiesExtension.GetTcpIPv6Listeners();
    foreach (var item in props)
    {
        Console.WriteLine(item);
    }
}

다음과 같은 출력 결과를 얻을 수 있습니다.

0.0.0.0:80 Listen (pid:4)
0.0.0.0:135 Listen (pid:1824)
0.0.0.0:445 Listen (pid:4)
0.0.0.0:1433 Listen (pid:7884)
...[생략]...
[::]:80 Listen (pid:4)
[::]:135 Listen (pid:1824)
[::]:445 Listen (pid:4)
[::]:1433 Listen (pid:7884)
...[생략]...

(첨부 파일은 이 글의 소스코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 2/15/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13879정성태2/5/20255302오류 유형: 946. Ubuntu - N: Updating from such a repository can't be done securely, and is therefore disabled by default.
13878정성태2/3/20255248오류 유형: 945. Windows - 최대 절전 모드 시 DRIVER_POWER_STATE_FAILURE 발생 (pacer.sys)
13877정성태1/25/20254483닷넷: 2315. C# - PCI 장치 열거 (레지스트리, SetupAPI)파일 다운로드1
13876정성태1/25/20255524닷넷: 2314. C# - ProcessStartInfo 타입의 Arguments와 ArgumentList파일 다운로드1
13875정성태1/24/20254113스크립트: 69. 파이썬 - multiprocessing 패키지의 spawn 모드로 동작하는 uvicorn의 workers
13874정성태1/24/20255331스크립트: 68. 파이썬 - multiprocessing Pool의 기본 프로세스 시작 모드(spawn, fork)
13873정성태1/23/20253946디버깅 기술: 217. WinDbg - PCI 장치 열거파일 다운로드1
13872정성태1/23/20253557오류 유형: 944. WinDbg - 원격 커널 디버깅이 연결은 되지만 Break (Ctrl + Break) 키를 눌러도 멈추지 않는 현상
13871정성태1/22/20254051Windows: 278. Windows - 윈도우를 다른 모니터 화면으로 이동시키는 단축키 (Window + Shift + 화살표)
13870정성태1/18/20254924개발 환경 구성: 741. WinDbg - 네트워크 커널 디버깅이 가능한 NIC 카드 지원 확대
13869정성태1/18/20254257개발 환경 구성: 740. WinDbg - _NT_SYMBOL_PATH 환경 변수에 설정한 경로로 심벌 파일을 다운로드하지 않는 경우
13868정성태1/17/20253897Windows: 277. Hyper-V - Windows 11 VM의 Enhanced Session 모드로 로그인을 할 수 없는 문제
13867정성태1/17/20255398오류 유형: 943. Hyper-V에 Windows 11 설치 시 "This PC doesn't currently meet Windows 11 system requirements" 오류
13866정성태1/16/20255619개발 환경 구성: 739. Windows 10부터 바뀐 device driver 서명 방법
13865정성태1/15/20255169오류 유형: 942. C# - .NET Framework 4.5.2 이하의 버전에서 HttpWebRequest로 https 호출 시 "System.Net.WebException" 예외 발생
13864정성태1/15/20255169Linux: 114. eBPF를 위해 필요한 SELinux 보안 정책
13863정성태1/14/20254084Linux: 113. Linux - 프로세스를 위한 전용 SELinux 보안 문맥 지정
13862정성태1/13/20254587Linux: 112. Linux - 데몬을 위한 SELinux 보안 정책 설정
13861정성태1/11/20254700Windows: 276. 명령행에서 원격 서비스를 동기/비동기로 시작/중지
13860정성태1/10/20254360디버깅 기술: 216. WinDbg - 2가지 유형의 식 평가 방법(MASM, C++)
13859정성태1/9/20255144디버깅 기술: 215. Windbg - syscall 이후 실행되는 KiSystemCall64 함수 및 SSDT 디버깅
13858정성태1/8/20255127개발 환경 구성: 738. PowerShell - 원격 호출 시 "powershell.exe"가 아닌 "pwsh.exe" 환경으로 명령어를 실행하는 방법
13857정성태1/7/20255414C/C++: 187. Golang - 콘솔 응용 프로그램을 Linux 데몬 서비스를 지원하도록 변경파일 다운로드1
13856정성태1/6/20254324디버깅 기술: 214. Windbg - syscall 단계까지의 Win32 API 호출 (예: Sleep)
13855정성태12/28/20245968오류 유형: 941. Golang - os.StartProcess() 사용 시 오류 정리
13854정성태12/27/20245856C/C++: 186. Golang - 콘솔 응용 프로그램을 NT 서비스를 지원하도록 변경파일 다운로드1
1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...