Microsoft MVP성태의 닷넷 이야기
닷넷: 2259. C# - decimal 저장소의 비트 구조 [링크 복사], [링크+제목 복사],
조회: 10507
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 8개 있습니다.)
.NET Framework: 539. C# - 부동 소수 계산 왜 이렇게 나오죠? (1)
; https://www.sysnet.pe.kr/2/0/10872

.NET Framework: 540. C# - 부동 소수 계산 왜 이렇게 나오죠? (2)
; https://www.sysnet.pe.kr/2/0/10873

.NET Framework: 608. double 값을 구할 때는 반드시 피연산자를 double로 형변환!
; https://www.sysnet.pe.kr/2/0/11055

개발 환경 구성: 440. C#, C++ - double의 Infinity, NaN 표현 방식
; https://www.sysnet.pe.kr/2/0/11896

기타: 85. 단정도/배정도 부동 소수점의 정밀도(Precision)에 따른 형변환 손실
; https://www.sysnet.pe.kr/2/0/13212

닷넷: 2257. C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

닷넷: 2258. C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

닷넷: 2259. C# - decimal 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13619




C# - decimal 저장소의 비트 구조

decimal의 경우 float/double과 내부적인 처리는 유사하지만,

C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

그것들의 관계처럼 단순히 지수부와 가수부에 대한 비트 수만 확장한 것이 아니라, 지수부의 진법을 2가 아니라 10으로 취급한다는 점이 다릅니다. 마이크로소프트의 공식 문서는 (어딘가 있을 듯한데) 찾을 수 없었지만 아래의 글에 이에 대한 내용이 나옵니다.

Decimal floating point in .NET
; https://csharpindepth.com/articles/Decimal

결국, decimal은 16바이트이고 8바이트씩 나눠 다룰 수 있는데 이것을 bit mask로 표현하면 이렇게 구분할 수 있습니다.

[하위 8바이트(64비트)]
가수부 64비트: 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111

[상위 8바이트(64비트)]
상위 가수부 32비트: 1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000
지수부 5비트:       0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000
Sign 1비트:        0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000

따라서, 가수부는 총 96비트, 즉 2의 96승을 다룰 수 있고, 지수부는 5비트로 32까지 다룰 수 있지만 실제로 사용하는 범위는 0~28까지라고 합니다. 그래서 지수부의 경우 1_1111 비트 마스크 중 사실상 0_1111로 처리해도 무방합니다.

예를 하나 들어볼까요? ^^

18_446_744_073_709_551_616m 숫자에 대해 각각의 부호 비트, 지수부, 가수부를 다음과 같은 코드로 구할 수 있습니다.

decimal m = 18_446_744_073_709_551_615m + 1m;

Console.WriteLine($"decimal value: {m}");
byte* pDecimal = (byte*)&m;
ParseDecimalFormat(pDecimal);

private static unsafe void ParseDecimalFormat(byte* pDecimal)
{
    // 1bit - signbit
    // 5bits - exponent (only valid 0~28), 10의 n 승
    // 96bits - mantissa

    // 하위 - 64bits mantissa
    // 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;
    // 0111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111;

    // 상위 - 64bits
    // 1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000; // 상위 32bits - 추가 mantissa
    // 0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000; // 5bits - exponent
    // 0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000; // 1bit - sign

    byte* hiPart = pDecimal;
    byte* loPart = pDecimal + 8;

    bool signBit = GetDecimalSignBit(hiPart);
    Console.WriteLine($"sign bit: {signBit}");

    ulong exponentBits = GetDecimalExponents(hiPart);
    Console.WriteLine($"10-exponent: {exponentBits}");

    BigInteger mantissaBits = GetMantissa(hiPart, loPart);
    Console.WriteLine($"Mantissa: {mantissaBits}");
}

private static unsafe bool GetDecimalSignBit(byte* hiPart)
{
    ulong hi = *(ulong*)hiPart;
    ulong signBit = hi & 0b_0000_0000_0000_0000_0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_0000_0000;

    return signBit != 0;
}

private static unsafe ulong GetDecimalExponents(byte* hiPart)
{
    ulong hi = *(ulong*)hiPart;
    ulong exponentBits = hi & 0b_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001_1111_0000_0000_0000_0000;
    return exponentBits >> 16;
}

private static unsafe BigInteger GetMantissa(byte* hiPart, byte* loPart)
{
    ulong lo = *(ulong*)loPart;
    BigInteger lower = new BigInteger(lo);

    ulong hi = *(ulong*)hiPart;
    ulong hiMantissa = hi & 0b_1111_1111_1111_1111_1111_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000;
    hiMantissa = (hiMantissa >> 32);

    BigInteger large = hiMantissa;
    large = large << 64;

    Console.WriteLine($"Low mantissa: {lo}");
    Console.WriteLine($"Hig mantissa: {large}");

    return large + lower;
}

실행 결과는 다음과 같습니다.

decimal value: 18446744073709551616
sign bit: False
10-exponent: 0
Low mantissa: 0
Hig mantissa: 18446744073709551616
Mantissa: 18446744073709551616

숫자에 소수점이 없어서 말 그대로 96비트의 숫자를 다루는 형태입니다. 반면 -0.01m으로 하면,

decimal m = -0.01m;

Console.WriteLine($"decimal value: {m}");
byte* pDecimal = (byte*)&m;
ParseDecimalFormat(pDecimal);

이런 출력 결과가 나옵니다.

decimal value: -0.01
sign bit: True
10-exponent: 2
Low mantissa: 1
Hig mantissa: 0
Mantissa: 1

보는 바와 같이 지수부의 숫자가 2인데요, float/double이 각각 127, 1023을 bias로 잡아 음의 지수, 양의 지수를 표현했던 것과는 달리 decimal은 무조건 음의 지수로 10의 -n 승을 의미합니다.

즉, 위의 경우에는 10의 -2승이 돼 원래의 숫자를 다음과 같은 공식으로 복원할 수 있습니다.

sign * mantissa / 10exponent

위의 공식에 분해한 숫자를 각각 대입하면 원래의 값이 나옵니다.

sign bit: True ==> -1
mantissa = 1
exponent = 2

-1 * 1 / 102 == -0.01

다시 말해, float/double이 2진수를 지수승으로 표기해 0.1 숫자를 제대로 표현할 수 없었던 한계를 decimal은 10의 n 승으로 지수를 계산하기 때문에 0.1에 대한 표현의 제약이 없어진 것입니다. (물론, 그만큼 연산 속도는 느립니다.)

자, 그럼 분해한 숫자를 기반으로 원래의 숫자를 복원하는 코드도 이렇게 간결하게 만들 수 있습니다. ^^

decimal m = -0.01m;

byte* pDecimal = (byte*)&m;
byte* hiPart = pDecimal;
byte* loPart = pDecimal + 8;

bool signBit = GetDecimalSignBit(hiPart);
ulong exponentBits = GetDecimalExponents(hiPart);
BigInteger mantissaBits = GetMantissa(hiPart, loPart);

{
    decimal orignalValue = (decimal)mantissaBits;
    decimal exponent = (decimal)Pow10(exponentBits);

    orignalValue = orignalValue / exponent;
    orignalValue = orignalValue * (signBit ? -1 : 1);

    Console.WriteLine(orignalValue); // 출력 결과: -0.01
}




한 가지 재미있는 점은, decimal의 경우 (float/double과는 다르게) 4바이트 int 배열로 그 구조를 반환하는 GetBits 메서드를 별도로 제공한다는 점입니다.

GetBits(Decimal)
; https://learn.microsoft.com/en-us/dotnet/api/system.decimal.getbits#System_Decimal_GetBits_System_Decimal_

이전에 설명했듯이 96비트가 int의 3개에 해당한다는 점, 그리고 부호/지수 비트의 영역이 남은 32비트에 있다는 점에서 GetBits는 가수부와 지수부/부호부를 어느 정도 분해해서 반환하는 효과를 갖습니다.

참고로, 검색하던 중에 아래와 같은 질문을 봤는데요,

How do check if a decimal has a fractional part in C#
; https://www.reddit.com/r/learnprogramming/comments/1g1f31/how_do_check_if_a_decimal_has_a_fractional_part/

즉, decimal의 값이 소수점을 포함하고 있는지를 확인하고 싶다는 건데, 이런 경우 GetBits를 이용하면 다음과 같이 구할 수 있고,

int[] bits = Decimal.GetBits(m);
bool hasFraction = (bits[3] & 0x7FFF_FFFF) != 0;

혹은 직접 포인터를 구해 저 영역의 값을 확인해도 됩니다.

decimal m = -0.01m;
byte* pDecimal = (byte*)&m;
ulong upper = *(ulong*)(pDecimal + 8);
bool checkFraction = (upper & 0x7FFF_FFFF) != 0;

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/10/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2025-05-17 10시36분
본문에서 상위 8바이트의 16비트가 사용되지 않는 것을 볼 수 있습니다. 이유가 뭘까요? 이에 대해 C/C++의 DECIMAL에서 흔적을 찾을 수가 있군요. ^^

What’s with the weird wReserved value at the start of the DECIMAL structure?
; https://devblogs.microsoft.com/oldnewthing/20250516-00/?p=111185

Win32 C/C++에서도 "wReserved"라는 필드로 16비트를 점유하고 있는데요,

typedef struct tagDEC {
  USHORT wReserved;
  union {
    struct {
      BYTE scale;
      BYTE sign;
    };
    USHORT signscale;
  };
  ULONG Hi32;
  union {
    struct {
      ULONG Lo32;
      ULONG Mid32;
    };
    ULONGLONG Lo64;
  };
} DECIMAL;

VARIANT의 vt 필드로 구조를 맞추기 위해서였다고 합니다. 즉, 마이크로소프트는 Windows 환경에 C/C++에서 정의한 VARIANT와 DECIMAL 구조체를 그대로 C#에 도입한 것입니다.

----------------------------------------

눈치채셨겠지만 ^^ 당연히 이러한 정의는 표준이 될 수 없습니다. 찾아보니까, IEEE 754 표준이 있긴 하지만,

Decimal data type - Standard formats
; https://en.wikipedia.org/wiki/Decimal_data_type#Standard_formats

(C#뿐만 아니라) 제각각 언어마다 구현을 달리하는 것 같습니다.

Decimal data type - Language support
; https://en.wikipedia.org/wiki/Decimal_data_type#Language_support
정성태

... 76  77  78  79  80  81  82  83  84  [85]  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11846정성태3/15/201923152Linux: 6. getenv, setenv가 언어/운영체제마다 호환이 안 되는 문제
11845정성태3/15/201922841Linux: 5. Linux 응용 프로그램의 (C++) so 의존성 줄이기(ReleaseMinDependency) [3]
11844정성태3/14/201924591개발 환경 구성: 434. Visual Studio 2019 - 리눅스 프로젝트를 이용한 공유/실행(so/out) 프로그램 개발 환경 설정 [1]파일 다운로드1
11843정성태3/14/201919412기타: 75. MSDN 웹 사이트를 기본으로 영문 페이지로 열고 싶다면?
11842정성태3/13/201917278개발 환경 구성: 433. 마이크로소프트의 CoreCLR 프로파일러 예제를 Visual Studio CMake로 빌드하는 방법 [1]파일 다운로드1
11841정성태3/13/201917749VS.NET IDE: 132. Visual Studio 2019 - CMake의 컴파일러를 기본 g++에서 clang++로 변경
11840정성태3/13/201919828오류 유형: 526. 윈도우 10 Ubuntu App 환경에서는 USB 외장 하드 접근 불가
11839정성태3/12/201923890디버깅 기술: 124. .NET Core 웹 앱을 호스팅하는 Azure App Services의 프로세스 메모리 덤프 및 windbg 분석 개요 [3]
11838정성태3/7/201927624.NET Framework: 811. (번역글) .NET Internals Cookbook Part 1 - Exceptions, filters and corrupted processes [1]파일 다운로드1
11837정성태3/6/201941273기타: 74. 도서: 시작하세요! C# 7.3 프로그래밍 [10]
11836정성태3/5/201924922오류 유형: 525. Visual Studio 2019 Preview 4/RC - C# 8.0 Missing compiler required member 'System.Range..ctor' [1]
11835정성태3/5/201923072.NET Framework: 810. C# 8.0의 Index/Range 연산자를 .NET Framework에서 사용하는 방법 및 비동기 스트림의 컴파일 방법 [3]파일 다운로드1
11834정성태3/4/201921780개발 환경 구성: 432. Visual Studio 없이 최신 C# (8.0) 컴파일러를 사용하는 방법
11833정성태3/4/201922824개발 환경 구성: 431. Visual Studio 2019 - CMake를 이용한 공유/실행(so/out) 리눅스 프로젝트 설정파일 다운로드1
11832정성태3/4/201917831오류 유형: 524. Visual Studio CMake - rsync: connection unexpectedly closed
11831정성태3/4/201918577오류 유형: 523. Visual Studio 2019 - 새 창으로 뜬 윈도우를 닫을 때 비정상 종료
11830정성태2/26/201917820오류 유형: 522. 이벤트 로그 - Error opening event log file State. Log will not be processed. Return code from OpenEventLog is 87.
11829정성태2/26/201919092개발 환경 구성: 430. 마이크로소프트의 CoreCLR 프로파일러 예제 빌드 방법 - 리눅스 환경 [1]
11828정성태2/26/201927594개발 환경 구성: 429. Component Services 관리자의 RuntimeBroker 설정이 2개 있는 경우 [8]
11827정성태2/26/201920029오류 유형: 521. Visual Studio - Could not start the 'rsync' command on the remote host, please install it using your system package manager.
11826정성태2/26/201920585오류 유형: 520. 우분투에 .NET Core SDK 설치 시 패키지 의존성 오류
11825정성태2/25/201926244개발 환경 구성: 428. Visual Studio 2019 - CMake를 이용한 리눅스 빌드 환경 설정 [1]
11824정성태2/25/201920493오류 유형: 519. The SNMP Service encountered an error while accessing the registry key SYSTEM\CurrentControlSet\Services\SNMP\Parameters\TrapConfiguration. [1]
11823정성태2/21/201921450오류 유형: 518. IIS 관리 콘솔이 뜨지 않는 문제
11822정성태2/20/201920647오류 유형: 517. docker에 설치한 MongoDB 서버로 연결이 안 되는 경우
11821정성태2/20/201921395오류 유형: 516. Visual Studio 2019 - This extension uses deprecated APIs and is at risk of not functioning in a future VS update. [1]
... 76  77  78  79  80  81  82  83  84  [85]  86  87  88  89  90  ...