Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  [99]  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11492정성태4/13/201816016개발 환경 구성: 360. Azure Active Directory의 사용자 도메인 지정 방법
11491정성태4/13/201819186개발 환경 구성: 359. Azure 가상 머신에 Web Application을 배포하는 방법
11490정성태4/12/201818144.NET Framework: 739. .NET Framework 4.7.1의 새 기능 - Configuration builders [1]파일 다운로드1
11489정성태4/12/201815916오류 유형: 463. 윈도우 백업 오류 - a Volume Shadow Copy Service operation failed.
11488정성태4/12/201819624오류 유형: 462. Unhandled Exception in Managed Code Snap-in - FX:{811FD892-5EB4-4E73-A147-F1E079E36C4E}
11487정성태4/12/201817866디버깅 기술: 115. windbg - 닷넷 메모리 덤프에서 정적(static) 필드 값을 조사하는 방법
11486정성태4/11/201816977오류 유형: 461. Error MSB4064 The "ComputeOutputOnly" parameter is not supported by the "VsTsc" task
11485정성태4/11/201824928.NET Framework: 738. C# - Console 프로그램이 Ctrl+C 종료 시점을 감지하는 방법파일 다운로드1
11484정성태4/11/201826228.NET Framework: 737. C# - async를 Task 타입이 아닌 사용자 정의 타입에 적용하는 방법파일 다운로드1
11483정성태4/10/201829505개발 환경 구성: 358. "Let's Encrypt"에서 제공하는 무료 SSL 인증서를 IIS에 적용하는 방법 (2) [1]
11482정성태4/10/201821437VC++: 126. CUDA Core 수를 알아내는 방법
11481정성태4/10/201833697개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
11480정성태4/9/201823632.NET Framework: 736. C# - API를 사용해 Azure에 접근하는 방법 [2]파일 다운로드1
11479정성태4/9/201818496.NET Framework: 735. Azure - PowerShell로 Access control(IAM)에 새로운 계정 만드는 방법
11478정성태11/8/201921529디버깅 기술: 115. windbg - 덤프 파일로부터 PID와 환경변수 등의 정보를 구하는 방법 [1]
11477정성태4/8/201818634오류 유형: 460. windbg - sos 명령어 수행 시 c0000006 오류 발생
11476정성태4/8/201820068디버깅 기술: 114. windbg - !threads 출력 결과로부터 닷넷 관리 스레드(System.Threading.Thread) 객체를 구하는 방법
11475정성태3/28/201822699디버깅 기술: 113. windbg - Thread.Suspend 호출 시 응용 프로그램 hang 현상에 대한 덤프 분석
11474정성태3/27/201820949오류 유형: 459. xperf: error: TEST.Event: Invalid flags. (0x3ec).
11473정성태3/22/201825871.NET Framework: 734. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상파일 다운로드2
11472정성태3/22/201819502개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
11471정성태3/20/201822703VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [1]파일 다운로드1
11470정성태3/20/201825478오류 유형: 458. Visual Studio - CUDA 프로젝트 빌드 시 오류 C1189, expression must have a constant value
11469정성태3/19/201818406오류 유형: 457. error MSB3103: Invalid Resx file. Could not load file or assembly 'System.Windows.Forms, ...' or one of its dependencies.
11468정성태3/19/201817686오류 유형: 456. 닷넷 응용 프로그램 실행 시 0x80131401 예외 발생
11467정성태3/19/201817453오류 유형: 455. Visual Studio Installer - 업데이트 실패
... 91  92  93  94  95  96  97  98  [99]  100  101  102  103  104  105  ...