Microsoft MVP성태의 닷넷 이야기
글쓴 사람
홈페이지
첨부 파일

MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차

C# - MathNet.Numerics의 Matrix(행렬) 연산
; https://www.sysnet.pe.kr/2/0/11910

MathNET + OxyPlot을 이용한 간단한 통계 정보 처리 - Histogram
; https://www.sysnet.pe.kr/2/0/11916

이번엔 MathNet의 분산과 표준편차를 위한 메서드를 보겠습니다.

List<double> dblHeights = LoadData("data.txt");

// dblHeights == 32 27 29 34 33라고 가정

Console.WriteLine($"# of data: {dblHeights.Count}"); // 31

Console.WriteLine($"MathNet - Variance: {Statistics.Variance(dblHeights)}"); // 8.5
Console.WriteLine($"MathNet - Standard Deviation: {Statistics.StandardDeviation(dblHeights)}"); // 2.91547594742265

그런데 값이 좀 이상합니다. 위의 분산값은 8.5라고 나오는데, 실제로 계산해 보면 6.8이기 때문입니다. (분산이 틀리니 표준편차 값도 당연히 틀립니다.) 이유는 간단합니다. Variance와 StandardDeviation 메서드는 통계의 "모집단(population)에 대한 분산/표준편차"가 아니라 "표본(sample)에 대한 분산/표준편차"를 출력해 주는 것이고 표본의 경우 Bessel's correction을 고려한 값을 반환하도록 되어 있습니다.

엑셀(Excel)을 해보신 분은 알겠지만 엑셀에서도 다음의 2가지 분산/표준편차 함수가 제공됩니다.

VAR.S       표본에 대한 분산
STDDEV.S    표본에 대한 표준편차

VAR.P       모집단에 대한 분산
STDDEV.P    모집단에 대한 표준편차

* S는 Sample, P는 Population을 의미

C# 코드로 분산을 구현하면 이렇게 작성할 수 있습니다.

public static double Variance(double[] samples, double mean, bool useBesselCorrection)
{
    if (samples.Length <= ((useBesselCorrection == true) ? 1 : 0))
    {
        return double.NaN;
    }

    double sum = 0;

    for (int i = 0; i < samples.Length; i++)
    {
        double diff = samples[i] - mean;
        sum += (diff * diff);
    }

    double variance = sum / ((samples.Length - ((useBesselCorrection == true) ? 1 : 0)));
    return variance;
}

통계학의 기본을 알지 못하면 어찌 보면 말장난 같기도 합니다. 모집단에 대한 분산을 구할 때는 samples.Length로 나누고, 표본에 대한 분산을 구할 때는 samples.Length - 1을 하게 됩니다. 즉, 동일한 데이터를 samples 배열에 넣어 전달해도 그것이 모집단(전체 집합)의 데이터냐, 부분 샘플에 대한 데이터냐에 따라 결과가 달리 나오는 것입니다. (참고: https://blog.naver.com/dalsapcho/20147545698, 개인적으로 이 글에서 "개념 정리"에 나온 그림이 마음에 듭니다. ^^)




그런데 Math.NET의 분산을 구하는 코드가 재미있습니다.

/*
Estimates the unbiased population variance from the provided samples as unsorted array. 
On a dataset of size N will use an N-1 normalizer (Bessel's correction). 
Returns NaN if data has less than two entries or if any entry is NaN. 
*/
public static double Variance(double[] samples)
{
    if (samples.Length <= 1)
    {
        return double.NaN;
    }
    double num = 0.0;
    double num2 = samples[0];
    for (int i = 1; i < samples.Length; i++)
    {
        num2 += samples[i];
        double num4 = ((i + 1) * samples[i]) - num2;
        num += (num4 * num4) / ((i + 1.0) * i);
    }
    return (num / ((double) (samples.Length - 1))); // 표본 분산이므로.
}

제가 만든 C# 분산 코드와 위의 분산을 구하는 코드가 다릅니다. 하지만 (double 연산의 특성으로 소수점 2자리부터 차이가 발생하지만) 결과는 같습니다. 왜 저렇게 어렵게 분산을 구하는 것일까요? 이유가 멋집니다. 제가 작성했던 코드는 2-pass인 반면, Math.NET의 코드는 1-pass입니다. 다시 말해, 제가 작성한 코드는 평균값을 알고 있어야 하는데 그 평균을 구하기 위해 미리 한번 전체 데이터에 대한 루프를 돌아야 하지만, Math.NET의 코드는 평균값을 알지 못해도 분산을 구할 수 있는 것입니다.

물론, 평균값을 이미 구했다면 2-pass 코드가 분산을 더 빠르게 구할 수 있습니다. 사실... 통계값을 구한다면 대부분의 경우 평균은 기본적으로 구할 것이므로 현실적으로 효용성이 있느냐는 별개의 문제로 보입니다. ^^




참고로 Math.NET에서 모집단에 대한 분산/표준편차를 구하려면 Population이 붙은 메서드를 사용하면 됩니다.

Console.WriteLine($"MathNet - Variance: {Statistics.PopulationVariance(dblHeights)}");
Console.WriteLine($"MathNet - Standard Deviation: {Statistics.PopulationStandardDeviation(dblHeights)}");

또한 구현 코드 역시 Bessel's correction의 차이에 따라 "-1" 교정이 없는 버전의 동일한 코드로 제공됩니다.

/*
Evaluates the population variance from the full population provided as unsorted array. 
On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset. 
Returns NaN if data is empty or if any entry is NaN.
*/
public static double PopulationVariance(double[] population)
{
    if (population.Length == 0)
    {
        return double.NaN;
    }
    double num = 0.0;
    double num2 = population[0];
    for (int i = 1; i < population.Length; i++)
    {
        num2 += population[i];
        double num4 = ((i + 1) * population[i]) - num2;
        num += (num4 * num4) / ((i + 1.0) * i);
    }
    return (num / ((double) population.Length));
}

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/24/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12269정성태7/16/20200오류 유형: 632. .NET Core 웹 응용 프로그램 - The process was terminated due to an unhandled exception.
12268정성태7/15/202021오류 유형: 631. .NET Core 웹 응용 프로그램 오류 - HTTP Error 500.35 - ANCM Multiple In-Process Applications in same Process
12267정성태7/15/202041.NET Framework: 927. C# - 윈도우 프로그램에서 Credential Manager를 이용한 보안 정보 저장파일 다운로드1
12266정성태7/14/202041오류 유형: 630. 사용자 계정을 지정해 CreateService API로 서비스를 등록한 경우 "Error 1069: The service did not start due to a logon failure." 오류발생
12265정성태7/10/202053오류 유형: 629. Visual Studio - 웹 애플리케이션 실행 시 "Unable to connect to web server 'IIS Express'." 오류 발생
12264정성태7/9/202050오류 유형: 628. docker: Error response from daemon: Conflict. The container name "..." is already in use by container "...".
12261정성태7/9/2020231VS.NET IDE: 148. 윈도우 10에서 .NET Core 응용 프로그램을 리눅스 환경에서 실행하는 2가지 방법 - docker, WSL 2 [3]
12260정성태7/8/202089.NET Framework: 926. C# - ETW를 이용한 ThreadPool 스레드 감시파일 다운로드1
12259정성태7/8/202042오류 유형: 627. nvlddmkm.sys의 BAD_POOL_HEADER BSOD 문제
12258정성태7/8/2020113기타: 77. DataDog APM 간략 소개
12257정성태7/7/202079.NET Framework: 925. C# - ETW를 이용한 Monitor Enter/Exit 감시파일 다운로드1
12256정성태7/7/2020132.NET Framework: 924. C# - Reflection으로 변경할 수 없는 readonly 정적 필드 [4]
12255정성태7/6/202089.NET Framework: 923. C# - ETW(Event Tracing for Windows)를 이용한 Finalizer 실행 감시파일 다운로드1
12254정성태7/2/202061오류 유형: 626. git - REMOTE HOST IDENTIFICATION HAS CHANGED!
12253정성태7/2/2020140.NET Framework: 922. C# - .NET ThreadPool의 Local/Global Queue파일 다운로드1
12252정성태7/2/2020122.NET Framework: 921. C# - I/O 스레드를 사용한 비동기 소켓 서버/클라이언트파일 다운로드2
12251정성태7/1/2020145.NET Framework: 920. C# - 파일의 비동기 처리 유무에 따른 스레드 상황파일 다운로드2
12250정성태7/1/2020379.NET Framework: 919. C# - 닷넷에서의 진정한 비동기 호출을 가능케 하는 I/O 스레드 사용법 [1]파일 다운로드1
12249정성태6/29/202055오류 유형: 625. Microsoft SQL Server 2019 RC1 Setup - 설치 제거 시 Warning 26003 오류 발생
12248정성태6/29/202058오류 유형: 624. SQL 서버 오류 - service-specific error code 17051
12247정성태6/29/2020161.NET Framework: 918. C# - 불린 형 상수를 반환값으로 포함하는 3항 연산자 사용 시 단축 표현 권장(IDE0075) [2]파일 다운로드1
12246정성태6/29/202096.NET Framework: 917. C# - USB 관련 ETW(Event Tracing for Windows)를 이용한 키보드 입력을 감지하는 방법
12245정성태6/25/2020276.NET Framework: 916. C# - Task.Yield 사용법 (2) [2]파일 다운로드1
12244정성태6/29/2020141.NET Framework: 915. ETW(Event Tracing for Windows)를 이용한 닷넷 프로그램의 내부 이벤트 활용파일 다운로드1
12243정성태6/23/202090VS.NET IDE: 147. Visual C++ 프로젝트 - .NET Core EXE를 "Debugger Type"으로 지원하는 기능 추가
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...