Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  [141]  142  143  144  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1530정성태11/5/201327468기타: 38. 오픈소스로 풀린 하드 디스크 관리 도구 - WindowSMART
1529정성태11/5/201323350오류 유형: 192. SQL 서버 - The transaction log for database '...' is full due to 'LOG_BACKUP'.
1528정성태11/5/201328943디버깅 기술: 58. windbg 분석 사례 - WPF 응용 프로그램의 UI가 반응하지 않는 문제 [5]
1527정성태11/4/201326567VC++: 72. error MIDL2311 - mktyplib compatability mode 컴파일 오류
1526정성태11/3/201323264디버깅 기술: 57. C# - double 값에 대한 windbg 확인
1525정성태11/2/201329661.NET Framework: 391. C# - EXE/DLL로부터 추출한 이미지/아이콘의 배경색 투명 처리 [8]
1524정성태11/2/201330494기타: 37. 프로그램에 보여지는 리소스(예: 아이콘) 추출하는 방법 [1]
1523정성태11/2/201326869VS.NET IDE: 81. Visual Studio 확장 도구 AttachToW3WP - w3wp.exe에 대한 디버거 연결을 자동화하는 도구 [2]
1522정성태11/1/201323447VS.NET IDE: 80. IIS 8.0/8.5 - Global.asax.cs처럼 초기에 실행되는 코드에 Breakpoint를 잡는 방법
1521정성태11/1/201329305VS.NET IDE: 79. IIS 7.5 - Global.asax.cs처럼 초기에 실행되는 코드에 Breakpoint를 잡는 방법
1520정성태10/31/201323715오류 유형: 191. Visual Studio 2010 - 웹 애플리케이션 생성 시 "The project type is not supported by this installation." 오류 발생 해결
1519정성태10/31/201349240기타: 36. SYSTEM 또는 TrustedInstaller 소유로 되어 있는 폴더/파일을 삭제하는 방법 [5]
1518정성태10/30/201326897VS.NET IDE: 78. Visual Studio 확장으로 XmlCodeGenerator 제작하는 방법
1517정성태10/28/201326462디버깅 기술: 56. 덤프 파일에 핸들/스레드 정보를 포함하는 방법 [1]
1516정성태10/28/201331810.NET Framework: 390. FolderBrowserDialog보다 더 쓸만한 대화창이 필요하다면? [1]
1515정성태10/24/201334474VS.NET IDE: 77. Visual Studio 확장(VSIX) 만드는 방법 [5]
1514정성태10/24/201367806개발 환경 구성: 202. Internet Explorer 11을 7, 8, 9, 10 버전으로 인식시키는 방법 [9]파일 다운로드1
1513정성태10/23/201324359개발 환경 구성: 201. Azure Blob Storage의 DNS 경로를 사용자 DNS로 바꾸는 방법 [1]
1512정성태10/18/201327577개발 환경 구성: 200. IIS AppPool의 실행 계정을 변경하는 방법
1511정성태10/12/201325724.NET Framework: 389. The 3n + 1 problem의 C#/Java 버전 풀이 [2]
1510정성태10/8/201326624오류 유형: 190. 윈도우 서버 2012 R2 설치 후 인텔 NIC으로 인한 WMI 오류 발생
1509정성태10/8/201331792오류 유형: 189. Windows Server 8.1/2012 R2 - IME 비정상 종료 현상 [1]
1508정성태10/4/201326866.NET Framework: 388. 일반 닷넷 프로젝트에서 WinRT API를 호출하는 방법 [2]파일 다운로드1
1507정성태9/30/201324735오류 유형: 188. The key 'LocalizedPerfCounter' does not exist in the appSettings configuration section.
1506정성태9/30/201326921오류 유형: 187. Parameter "basePath" cannot be a relative path
1505정성태9/26/201375398기타: 35. Microsoft Office 2007 인증 생략하는 방법 [10]
... 136  137  138  139  140  [141]  142  143  144  145  146  147  148  149  150  ...