Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  144  145  146  147  [148]  149  150  ...
NoWriterDateCnt.TitleFile(s)
1354정성태9/19/201224455.NET Framework: 338. .NET CLR GC 시간 측정하는 방법파일 다운로드1
1353정성태9/17/201225764.NET Framework: 337. Python의 생성기와 코루틴을 C#으로 표현하면. [2]파일 다운로드1
1352정성태9/13/201223820.NET Framework: 336. .NET Profiler가 COM 개체일까?
1351정성태9/13/201228249디버깅 기술: 49. windbg - .NET Framework 스레드 개체의 COM Apartment 유형 확인하는 방법
1350정성태9/12/201228905개발 환경 구성: 167. (실은) 무료가 아니었던 AWS EC2 서비스 [4]
1349정성태9/11/201260646VS.NET IDE: 74. Visual Studio의 '새 파일'을 UTF-8 인코딩으로 지정하는 방법 [4]
1348정성태9/11/201228083오류 유형: 164. Active Directory - Functional Level 승격이 안 되는 문제
1347정성태9/10/201230551Windows: 62. 윈도우 서버 2012 - Hyper-V 서버 마이그레이션 [1]
1346정성태9/10/201231411Windows: 61. 윈도우 서버 2012 - Active Directory 서버 마이그레이션
1345정성태9/10/201235454스크립트: 12. 파이썬 - Win32 DLL 연동 [2]
1344정성태9/10/201228578오류 유형: 163. .NET Framework 4.5 제거 후 Visual Studio 2010 실행 시 Unknown Error
1343정성태9/8/201242341스크립트: 11. 파이썬(Python) 윈도우 개발 환경 [7]
1342정성태9/6/201226531VS.NET IDE: 73. Visual Studio 2012 - XmlCodeGenerator 마이그레이션
1341정성태9/4/201235848Windows: 60. Hyper-V에서 RemoteFX 없이 DirectX 11 제공 [12]
1340정성태9/4/201228039개발 환경 구성: 166. DOS - ping 결과에서 평균 응답 시간값 추출하기 [3]
1339정성태9/4/201230479개발 환경 구성: 165. 새로운 Visual Studio 2012 원격 디버깅 툴 [5]
1338정성태9/4/201232299.NET Framework: 335. C# - (핸들을 이용하여) 모든 열린 파일을 열람 [6]파일 다운로드1
1337정성태8/30/201222078Phone: 7. 디버거로 실습해 보는 윈도우 폰의 Tombstone 상태파일 다운로드1
1336정성태8/30/201240139.NET Framework: 334. 스레드 비정상 종료로 발생하는 CLOSE_WAIT 소켓 상태 [2]파일 다운로드1
1335정성태8/30/201228892Windows: 59. Hyper-V Internal 네트워크 VM의 인터넷 접속
1334정성태8/29/201248164.NET Framework: 333. 코드로 재현하는 소켓 상태(FIN_WAIT1, FIN_WAIT2, TIME_WAIT, CLOSE_WAIT, LAST_WAIT) [6]
1333정성태8/27/201251617개발 환경 구성: 164. system32 폴더에 있는 파일의 권한 조정 [2]
1332정성태8/23/201223523Team Foundation Server: 48. TFS - Team Project Collection 이전하는 방법
1331정성태8/23/201226667오류 유형: 162. Database '...' already exists. Choose a different database name. (Microsoft SQL Server, Error: 1801)
1330정성태8/22/201227417Team Foundation Server: 47. 5인 이내의 팀, 또는 개인 로컬 소스 관리를 위한 무료 TFS Express
1329정성태8/21/201222896오류 유형: 161. Azure - Storage 삭제가 안되는 경우 [1]
... 136  137  138  139  140  141  142  143  144  145  146  147  [148]  149  150  ...